These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34138302)

  • 1. Simultaneously Regulating Uniform Zn
    Wang Z; Dong L; Huang W; Jia H; Zhao Q; Wang Y; Fei B; Pan F
    Nanomicro Lett; 2021 Feb; 13(1):73. PubMed ID: 34138302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Seamless Metal-Organic Framework Interphase with Boosted Zn
    Sun H; Huyan Y; Li N; Lei D; Liu H; Hua W; Wei C; Kang F; Wang JG
    Nano Lett; 2023 Mar; 23(5):1726-1734. PubMed ID: 36794942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolitic Imidazolate Frameworks as Zn
    Liu X; Yang F; Xu W; Zeng Y; He J; Lu X
    Adv Sci (Weinh); 2020 Nov; 7(21):2002173. PubMed ID: 33173741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ion-Sieving Janus Separator toward Planar Electrodeposition for Deeply Rechargeable Zn-Metal Anodes.
    Zhang X; Li J; Qi K; Yang Y; Liu D; Wang T; Liang S; Lu B; Zhu Y; Zhou J
    Adv Mater; 2022 Sep; 34(38):e2205175. PubMed ID: 35901519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MOF-Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Dendrite-Free Zn Metal Anodes.
    Xue P; Guo C; Li L; Li H; Luo D; Tan L; Chen Z
    Adv Mater; 2022 Apr; 34(14):e2110047. PubMed ID: 35100662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Zinc Anode Enabled by Sulfonate-Rich MOF-Modified Separator.
    Chen R; Zhang G; Zhou H; Li J; Li J; Chung LH; Hu X; He J
    Small; 2024 Feb; 20(8):e2305687. PubMed ID: 37840433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials.
    Pu X; Jiang B; Wang X; Liu W; Dong L; Kang F; Xu C
    Nanomicro Lett; 2020 Jul; 12(1):152. PubMed ID: 34138177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO
    An Y; Tian Y; Man Q; Shen H; Liu C; Qian Y; Xiong S; Feng J; Qian Y
    ACS Nano; 2022 Apr; 16(4):6755-6770. PubMed ID: 35357131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galvanic stabilization of Zn metals for long-life aqueous batteries.
    Yuan L; Shi Z; Wan Y; Zhang J; Liu X
    J Phys Condens Matter; 2024 Jan; 36(16):. PubMed ID: 38190750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the Surface Tension of Zn Anodes by an Abietic Acid Layer for High Redox Kinetics and Reversibility.
    Chen H; Wang H; Li J; Fei B; Wang Z
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36914376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Manipulation of Zn
    Yang Y; Liu C; Lv Z; Yang H; Zhang Y; Ye M; Chen L; Zhao J; Li CC
    Adv Mater; 2021 Mar; 33(11):e2007388. PubMed ID: 33554430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery.
    Khamsanga S; Uyama H; Nuanwat W; Pattananuwat P
    Sci Rep; 2022 May; 12(1):8689. PubMed ID: 35606404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MXene-modified conductive framework as a universal current collector for dendrite-free lithium and zinc metal anode.
    Gong Z; Wang P; Ye K; Zhu K; Yan J; Wang G; Chen G; Cao D
    J Colloid Interface Sci; 2022 Nov; 625():700-710. PubMed ID: 35764049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies.
    Hoang Huy VP; Hieu LT; Hur J
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries.
    Wu C; Xie K; Ren K; Yang S; Wang Q
    Dalton Trans; 2020 Dec; 49(48):17629-17634. PubMed ID: 33283814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a Ni-Al Brucite-Based Interface Layer with Regulated Zn
    Sun Q; Chang L; Liu Y; Nie W; Lian M; Cheng H
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43942-43952. PubMed ID: 37677084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Strategies toward High-Performance Zn Metal Anode.
    Nie W; Cheng H; Sun Q; Liang S; Lu X; Lu B; Zhou J
    Small Methods; 2024 Jun; 8(6):e2201572. PubMed ID: 36840645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Phosphonate-Organic Network as Ion Enrichment Layer for Sustainable Zinc Metal Electrode with High Rate Capability.
    He X; Qian Y; Wu Y; Yan Z; Lin X; Kong XY; Zhao Y; Jiang L; Wen L
    Angew Chem Int Ed Engl; 2024 Dec; 63(50):e202411563. PubMed ID: 39226231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Passivation Stabilizes Zn Anode.
    He P; Huang J
    Adv Mater; 2022 May; 34(18):e2109872. PubMed ID: 35263472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Janus interface enables reversible Zn-ion battery by regulating interfacial water structure and crystal-orientation.
    Liang Y; Qiu M; Sun P; Mai W
    Chem Sci; 2024 Jan; 15(4):1488-1497. PubMed ID: 38274056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.