These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 34138317)
1. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal and Thermodynamic Therapy. Gao D; Chen T; Chen S; Ren X; Han Y; Li Y; Wang Y; Guo X; Wang H; Chen X; Guo M; Zhang YS; Hong G; Zhang X; Tian Z; Yang Z Nanomicro Lett; 2021 Mar; 13(1):99. PubMed ID: 34138317 [TBL] [Abstract][Full Text] [Related]
2. NIR-triggered thermo-responsive biodegradable hydrogel with combination of photothermal and thermodynamic therapy for hypoxic tumor. Sun X; Liu D; Xu X; Shen Y; Huang Y; Zeng Z; Xia M; Zhao C Asian J Pharm Sci; 2020 Nov; 15(6):713-727. PubMed ID: 33363627 [TBL] [Abstract][Full Text] [Related]
3. Amplification of Oxygen-Independent Free Radicals Based on a Glutathione Depletion and Biosynthesis Inhibition Strategy for Photothermal and Thermodynamic Therapy of Hypoxic Tumors. Huang H; Li W; Zhao Y; Yao S; Liu X; Liu M; Guo H ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593037 [TBL] [Abstract][Full Text] [Related]
4. NIR/MRI-Guided Oxygen-Independent Carrier-Free Anti-Tumor Nano-Theranostics. Gao D; Shi Y; Ni J; Chen S; Wang Y; Zhao B; Song M; Guo X; Ren X; Zhang X; Tian Z; Yang Z Small; 2022 Sep; 18(36):e2106000. PubMed ID: 34854571 [TBL] [Abstract][Full Text] [Related]
5. Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy. Zhang P; Wu Q; Yang J; Hou M; Zheng B; Xu J; Chai Y; Xiong L; Zhang C Acta Biomater; 2022 Jul; 146():450-464. PubMed ID: 35526739 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Feng L; Chen M; Li R; Zhou L; Wang C; Ye P; Hu X; Yang J; Sun Y; Zhu Z; Fang K; Chai K; Shi S; Dong C Acta Biomater; 2022 Jan; 138():463-477. PubMed ID: 34718179 [TBL] [Abstract][Full Text] [Related]
7. Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: targeting tumor hypoxia by carbonic anhydrase IX inhibition and T Zhu W; Liu Y; Yang Z; Zhang L; Xiao L; Liu P; Wang J; Yi C; Xu Z; Ren J J Mater Chem B; 2018 Jan; 6(2):265-276. PubMed ID: 32254169 [TBL] [Abstract][Full Text] [Related]
8. Treatment of triple negative breast cancer by near infrared light triggered mild-temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals. Li R; Hu X; Shang F; Wu W; Zhang H; Wang Y; Pan J; Shi S; Dong C Acta Biomater; 2022 Aug; 148():218-229. PubMed ID: 35705171 [TBL] [Abstract][Full Text] [Related]
9. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. Lv W; Cao M; Liu J; Hei Y; Bai J Acta Biomater; 2021 Nov; 135():617-627. PubMed ID: 34407474 [TBL] [Abstract][Full Text] [Related]
10. Free-Radical Cascade Generated by AIPH/Fe Li W; Li B; Wu B; Tian B; Chen X; Wang C; Hong W; Peng J ACS Appl Mater Interfaces; 2022 Jul; 14(26):29563-29576. PubMed ID: 35730906 [TBL] [Abstract][Full Text] [Related]
11. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Xu W; Qian J; Hou G; Wang Y; Wang J; Sun T; Ji L; Suo A; Yao Y Acta Biomater; 2019 Jan; 83():400-413. PubMed ID: 30465921 [TBL] [Abstract][Full Text] [Related]
12. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia. Bao B; Groves K; Zhang J; Handy E; Kennedy P; Cuneo G; Supuran CT; Yared W; Rajopadhye M; Peterson JD PLoS One; 2012; 7(11):e50860. PubMed ID: 23226406 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature photothermal irradiation triggers alkyl radicals burst for potentiating cancer immunotherapy. Ning B; Liu Y; Ouyang B; Su X; Guo H; Pang Z; Shen S J Colloid Interface Sci; 2022 May; 614():436-450. PubMed ID: 35108635 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia-Irrelevant Photonic Thermodynamic Cancer Nanomedicine. Xiang H; Lin H; Yu L; Chen Y ACS Nano; 2019 Feb; 13(2):2223-2235. PubMed ID: 30624041 [TBL] [Abstract][Full Text] [Related]
15. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. Chen B; Cao J; Zhang K; Zhang YN; Lu J; Zubair Iqbal M; Zhang Q; Kong X J Biomater Sci Polym Ed; 2021 Oct; 32(15):2028-2045. PubMed ID: 34251996 [TBL] [Abstract][Full Text] [Related]
16. Artesunate-Based Multifunctional Nanoplatform for Photothermal/Photoinduced Thermodynamic Synergistic Anticancer Therapy. Zhao PH; Ma ST; Hu JQ; Zheng BY; Ke MR; Huang JD ACS Appl Bio Mater; 2020 Nov; 3(11):7876-7885. PubMed ID: 35019528 [TBL] [Abstract][Full Text] [Related]
17. Acetazolamide-based [ More KN; Lee JY; Kim DY; Cho NC; Pyo A; Yun M; Kim HS; Kim H; Ko K; Park JH; Chang DJ Bioorg Med Chem Lett; 2018 Mar; 28(5):915-921. PubMed ID: 29422388 [TBL] [Abstract][Full Text] [Related]
18. Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy. Dash BS; Lu YJ; Pejrprim P; Lan YH; Chen JP Biomater Adv; 2022 May; 136():212764. PubMed ID: 35929292 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Lee KW; Wan Y; Li X; Cui X; Li S; Lee CS Adv Healthc Mater; 2021 May; 10(10):e2100055. PubMed ID: 33738983 [TBL] [Abstract][Full Text] [Related]
20. Shifting the absorption to the near-infrared region and inducing a strong photothermal effect by encapsulating zinc(II) phthalocyanine in poly(lactic-co-glycolic acid)-hyaluronic acid nanoparticles. Gao D; Wong RCH; Wang Y; Guo X; Yang Z; Lo PC Acta Biomater; 2020 Oct; 116():329-343. PubMed ID: 32890751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]