These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34138486)

  • 21. Natural quinazolinones: From a treasure house to promising anticancer leads.
    Li H; Fu G; Zhong W
    Eur J Med Chem; 2023 Jan; 245(Pt 1):114915. PubMed ID: 36375335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity.
    Yan X; Wen J; Zhou L; Fan L; Wang X; Xu Z
    Curr Top Med Chem; 2020; 20(21):1916-1937. PubMed ID: 32579505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential and promising anticancer drugs from adenosine and its analogs.
    Man S; Lu Y; Yin L; Cheng X; Ma L
    Drug Discov Today; 2021 Jun; 26(6):1490-1500. PubMed ID: 33639248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in β-lactam Derivatives as Potential Anticancer Agents.
    Zhang X; Jia Y
    Curr Top Med Chem; 2020; 20(16):1468-1480. PubMed ID: 32148196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quinoline-based Compounds with Potential Activity against Drugresistant Cancers.
    Li HT; Zhu X
    Curr Top Med Chem; 2021; 21(5):426-437. PubMed ID: 32552650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetrazole hybrids with potential anticancer activity.
    Zhang J; Wang S; Ba Y; Xu Z
    Eur J Med Chem; 2019 Sep; 178():341-351. PubMed ID: 31200236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxamic acid hybrids as the potential anticancer agents: An Overview.
    Liu W; Liang Y; Si X
    Eur J Med Chem; 2020 Nov; 205():112679. PubMed ID: 32791404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives.
    Yin LJ; Bin Ahmad Kamar AKD; Fung GT; Liang CT; Avupati VR
    Biomed Pharmacother; 2022 Jan; 145():112406. PubMed ID: 34785416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in isatin hybrids as potential anticancer agents.
    Ding Z; Zhou M; Zeng C
    Arch Pharm (Weinheim); 2020 Mar; 353(3):e1900367. PubMed ID: 31960987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in the discovery and combinatorial biosynthesis of microbial 14-membered macrolides and macrolactones.
    Park JW; Yoon YJ
    J Ind Microbiol Biotechnol; 2019 Mar; 46(3-4):445-458. PubMed ID: 30415291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Updates on the Anticancer Activity of Quinoxaline Hybrids (Jan. 2017-Jan. 2022).
    Feng LS; Gao C; Liu FW; Wang XP; Zhang ZL
    Curr Top Med Chem; 2022; 22(17):1426-1441. PubMed ID: 36028933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in the Application of Podophyllotoxin Derivatives to Fight Against Multidrug-Resistant Cancer Cells.
    Guo Q; Jiang E
    Curr Top Med Chem; 2021; 21(19):1712-1724. PubMed ID: 33441065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic Review on Cytotoxic and Anticancer Potential of N-Substituted Isatins as Novel Class of Compounds Useful in Multidrug-Resistant Cancer Therapy: In Silico and In Vitro Analysis.
    Gupta AK; Tulsyan S; Bharadwaj M; Mehrotra R
    Top Curr Chem (Cham); 2019 May; 377(3):15. PubMed ID: 31073777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current Scenario of Acridine Hybrids with Anticancer Potential.
    Zhang Q; Yu X
    Curr Top Med Chem; 2021; 21(19):1773-1786. PubMed ID: 34348622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current development of pyrazole-azole hybrids with anticancer potential.
    Zhang S; Ye Y; Zhang Q; Luo Y; Wang ZC; Wu YZ; Zhang XP; Yi C
    Future Med Chem; 2023 Aug; 15(16):1527-1548. PubMed ID: 37610862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Mechanisms of the Action of Myricetin in Cancer.
    Xie Y; Wang Y; Xiang W; Wang Q; Cao Y
    Mini Rev Med Chem; 2020; 20(2):123-133. PubMed ID: 31648635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anticancer potential of cardiac glycosides and steroid-azole hybrids.
    Hou Y; Shang C; Meng T; Lou W
    Steroids; 2021 Jul; 171():108852. PubMed ID: 33887267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones.
    Ren Y; Yu J; Kinghorn AD
    Curr Med Chem; 2016; 23(23):2397-420. PubMed ID: 27160533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and biological evaluation of new securinine analogues as potential anticancer agents.
    Perez M; Ayad T; Maillos P; Poughon V; Fahy J; Ratovelomanana-Vidal V
    Eur J Med Chem; 2016 Feb; 109():287-93. PubMed ID: 26793989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.