These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 34138686)
1. Rho GTPases in kidney physiology and diseases. Steichen C; Hervé C; Hauet T; Bourmeyster N Small GTPases; 2022 Jan; 13(1):141-161. PubMed ID: 34138686 [TBL] [Abstract][Full Text] [Related]
2. Monitoring of Rho GTPase Activity in Podocytes. Matsuda J; Takano T Methods Mol Biol; 2023; 2664():343-349. PubMed ID: 37423999 [TBL] [Abstract][Full Text] [Related]
3. Rho-family small GTPases are involved in forskolin-induced cell-cell contact formation of renal glomerular podocytes in vitro. Gao SY; Li CY; Shimokawa T; Terashita T; Matsuda S; Yaoita E; Kobayashi N Cell Tissue Res; 2007 May; 328(2):391-400. PubMed ID: 17265067 [TBL] [Abstract][Full Text] [Related]
4. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. Scott RP; Hawley SP; Ruston J; Du J; Brakebusch C; Jones N; Pawson T J Am Soc Nephrol; 2012 Jul; 23(7):1149-54. PubMed ID: 22518006 [TBL] [Abstract][Full Text] [Related]
5. Role of Rho GTPase Interacting Proteins in Subcellular Compartments of Podocytes. Asano-Matsuda K; Ibrahim S; Takano T; Matsuda J Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33915776 [TBL] [Abstract][Full Text] [Related]
6. Adrenomedullin ameliorates podocyte injury induced by puromycin aminonucleoside in vitro and in vivo through modulation of Rho GTPases. Dong N; Meng L; Xue R; Yu M; Zhao Z; Liu X Int Urol Nephrol; 2017 Aug; 49(8):1489-1506. PubMed ID: 28528353 [TBL] [Abstract][Full Text] [Related]
7. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Blattner SM; Hodgin JB; Nishio M; Wylie SA; Saha J; Soofi AA; Vining C; Randolph A; Herbach N; Wanke R; Atkins KB; Gyung Kang H; Henger A; Brakebusch C; Holzman LB; Kretzler M Kidney Int; 2013 Nov; 84(5):920-30. PubMed ID: 23677246 [TBL] [Abstract][Full Text] [Related]
8. Insulin controls cytoskeleton reorganization and filtration barrier permeability via the PKGIα-Rac1-RhoA crosstalk in cultured rat podocytes. Rachubik P; Szrejder M; Rogacka D; Typiak M; Audzeyenka I; Kasztan M; Pollock DM; Angielski S; Piwkowska A Biochim Biophys Acta Mol Cell Res; 2022 Sep; 1869(9):119301. PubMed ID: 35642843 [TBL] [Abstract][Full Text] [Related]
9. Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function. Mouawad F; Tsui H; Takano T Can J Physiol Pharmacol; 2013 Oct; 91(10):773-82. PubMed ID: 24144047 [TBL] [Abstract][Full Text] [Related]
10. Disease-causing mutations of RhoGDIα induce Rac1 hyperactivation in podocytes. Auguste D; Maier M; Baldwin C; Aoudjit L; Robins R; Gupta IR; Takano T Small GTPases; 2016 Apr; 7(2):107-21. PubMed ID: 26726844 [TBL] [Abstract][Full Text] [Related]
11. Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Yu H; Suleiman H; Kim AH; Miner JH; Dani A; Shaw AS; Akilesh S Mol Cell Biol; 2013 Dec; 33(23):4755-64. PubMed ID: 24061480 [TBL] [Abstract][Full Text] [Related]
12. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Wojciak-Stothard B; Tsang LY; Haworth SG Am J Physiol Lung Cell Mol Physiol; 2005 Apr; 288(4):L749-60. PubMed ID: 15591411 [TBL] [Abstract][Full Text] [Related]
13. Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro. Schlegel N; Meir M; Spindler V; Germer CT; Waschke J J Cell Physiol; 2011 May; 226(5):1196-203. PubMed ID: 20945370 [TBL] [Abstract][Full Text] [Related]
14. Role of Rho-GTPases in complement-mediated glomerular epithelial cell injury. Zhang H; Cybulsky AV; Aoudjit L; Zhu J; Li H; Lamarche-Vane N; Takano T Am J Physiol Renal Physiol; 2007 Jul; 293(1):F148-56. PubMed ID: 17376765 [TBL] [Abstract][Full Text] [Related]
15. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation. Debidda M; Wang L; Zang H; Poli V; Zheng Y J Biol Chem; 2005 Apr; 280(17):17275-85. PubMed ID: 15705584 [TBL] [Abstract][Full Text] [Related]
16. Angiopoietin-like 3 induces podocyte F-actin rearrangement through integrin α(V)β₃/FAK/PI3K pathway-mediated Rac1 activation. Lin Y; Rao J; Zha XL; Xu H Biomed Res Int; 2013; 2013():135608. PubMed ID: 24294595 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia-reoxygenation-induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase. Aslam M; Schluter KD; Rohrbach S; Rafiq A; Nazli S; Piper HM; Noll T; Schulz R; Gündüz D J Physiol; 2013 Jan; 591(2):461-73. PubMed ID: 23090948 [TBL] [Abstract][Full Text] [Related]
18. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Bruewer M; Hopkins AM; Hobert ME; Nusrat A; Madara JL Am J Physiol Cell Physiol; 2004 Aug; 287(2):C327-35. PubMed ID: 15044152 [TBL] [Abstract][Full Text] [Related]
19. Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. Babayeva S; Zilber Y; Torban E Am J Physiol Renal Physiol; 2011 Feb; 300(2):F549-60. PubMed ID: 20534871 [TBL] [Abstract][Full Text] [Related]
20. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function. Gimond C; van Der Flier A; van Delft S; Brakebusch C; Kuikman I; Collard JG; Fässler R; Sonnenberg A J Cell Biol; 1999 Dec; 147(6):1325-40. PubMed ID: 10601344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]