These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34138903)

  • 1. An evaluation of contralateral hand involvement in the operation of the Delft Self-Grasping Hand, an adjustable passive prosthesis.
    Chadwell A; Chinn N; Kenney L; Karthaus ZJ; Mos D; Smit G
    PLoS One; 2021; 16(6):e0252870. PubMed ID: 34138903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to use a body-powered prosthesis: changes in functionality and kinematics.
    Huinink LH; Bouwsema H; Plettenburg DH; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2016 Oct; 13(1):90. PubMed ID: 27716254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in performance over time while learning to use a myoelectric prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2014 Feb; 11():16. PubMed ID: 24568148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-Limb Transfer of Grasp Force Perception With Closed-Loop Hand Prosthesis.
    Fu Q; Shao F; Santello M
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):927-936. PubMed ID: 31021799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study.
    Mateo S; Di Rienzo F; Reilly KT; Revol P; Delpuech C; Daligault S; Guillot A; Jacquin-Courtois S; Luauté J; Rossetti Y; Collet C; Rode G
    Restor Neurol Neurosci; 2015; 33(4):543-55. PubMed ID: 26409412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning effects of repetitive administration of the Southampton Hand Assessment Procedure in novice prosthetic users.
    Vasluian E; Bongers RM; Reinders-Messelink HA; Burgerhof JG; Dijkstra PU; van der Sluis CK
    J Rehabil Med; 2014 Sep; 46(8):788-97. PubMed ID: 24850374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the grasping intention from electromyography during reaching motions.
    Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A
    J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The right anterior intraparietal sulcus is critical for bimanual grasping: a TMS study.
    Le A; Vesia M; Yan X; Niemeier M; Crawford JD
    Cereb Cortex; 2014 Oct; 24(10):2591-603. PubMed ID: 23645719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.
    Leeb R; Gubler M; Tavella M; Miller H; Del Millan JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():146-9. PubMed ID: 21096744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tenodesis Grasp Detection in Egocentric Video.
    Dousty M; Zariffa J
    IEEE J Biomed Health Inform; 2021 May; 25(5):1463-1470. PubMed ID: 32750944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic synergies of hand grasps: a comprehensive study on a large publicly available dataset.
    Jarque-Bou NJ; Scano A; Atzori M; Müller H
    J Neuroeng Rehabil; 2019 May; 16(1):63. PubMed ID: 31138257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel design method of anthropomorphic prosthetic hands for reproducing human hand grasping.
    Sun B; Xiong C; Chen W; Zhang Q; Mao L; Zhang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6215-21. PubMed ID: 25571417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rehand: Realistic electric prosthetic hand created with a 3D printer.
    Yoshikawa M; Sato R; Higashihara T; Ogasawara T; Kawashima N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2470-3. PubMed ID: 26736794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of virtual hand prosthesis control using an inductive tongue control system.
    Johansen D; Sebelius F; Jensen S; Bentsen B; Popović DB; Andreasen Struijk LN
    Assist Technol; 2016; 28(1):22-9. PubMed ID: 26479838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.