BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 34138966)

  • 1. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions.
    Goc A; Sumera W; Rath M; Niedzwiecki A
    PLoS One; 2021; 16(6):e0253489. PubMed ID: 34138966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity.
    Haddad M; Gaudreault R; Sasseville G; Nguyen PT; Wiebe H; Van De Ven T; Bourgault S; Mousseau N; Ramassamy C
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19.
    Muralidar S; Gopal G; Visaga Ambi S
    J Med Virol; 2021 Sep; 93(9):5260-5276. PubMed ID: 33851732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis.
    Bayati A; Kumar R; Francis V; McPherson PS
    J Biol Chem; 2021; 296():100306. PubMed ID: 33476648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry.
    Goc A; Niedzwiecki A; Rath M
    Sci Rep; 2021 Mar; 11(1):5207. PubMed ID: 33664446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible inhibition of GM-CSF production by SARS-CoV-2 spike-based vaccines.
    Li J; Wang P; Tracey KJ; Wang H
    Mol Med; 2021 May; 27(1):49. PubMed ID: 34022793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies.
    Jena AB; Kanungo N; Nayak V; Chainy GBN; Dandapat J
    Sci Rep; 2021 Jan; 11(1):2043. PubMed ID: 33479401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2.
    Rowland R; Brandariz-Nuñez A
    Microbiol Spectr; 2021 Oct; 9(2):e0119921. PubMed ID: 34494876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Syndecans to the Cellular Entry of SARS-CoV-2.
    Hudák A; Letoha A; Szilák L; Letoha T
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Molecular Masks" for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry.
    Shukla SP; Cho KB; Rustagi V; Gao X; Fu X; Zhang SX; Guo B; Udugamasooriya DG
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein.
    Kishimoto M; Uemura K; Sanaki T; Sato A; Hall WW; Kariwa H; Orba Y; Sawa H; Sasaki M
    Viruses; 2021 Feb; 13(3):. PubMed ID: 33671076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.
    Tandon R; Sharp JS; Zhang F; Pomin VH; Ashpole NM; Mitra D; McCandless MG; Jin W; Liu H; Sharma P; Linhardt RJ
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33173010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACE-2-Derived Biomimetic Peptides for the Inhibition of Spike Protein of SARS-CoV-2.
    Panda SK; Sen Gupta PS; Biswal S; Ray AK; Rana MK
    J Proteome Res; 2021 Feb; 20(2):1296-1303. PubMed ID: 33472369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potent small molecule inhibitors of SARS-CoV-2 entry.
    Mediouni S; Mou H; Otsuka Y; Jablonski JA; Adcock RS; Batra L; Chung DH; Rood C; de Vera IMS; Rahaim R; Ullah S; Yu X; Getmanenko YA; Kennedy NM; Wang C; Nguyen TT; Hull M; Chen E; Bannister TD; Baillargeon P; Scampavia L; Farzan M; Valente ST; Spicer TP
    SLAS Discov; 2022 Jan; 27(1):8-19. PubMed ID: 35058179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection
    Curreli F; Victor SMB; Ahmed S; Drelich A; Tong X; Tseng CK; Hillyer CD; Debnath AK
    mBio; 2020 Dec; 11(6):. PubMed ID: 33310780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant Inactivation of SARS-CoV-2 In Vitro by a Green Tea Catechin, a Catechin-Derivative, and Black Tea Galloylated Theaflavins.
    Ohgitani E; Shin-Ya M; Ichitani M; Kobayashi M; Takihara T; Kawamoto M; Kinugasa H; Mazda O
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis.
    Hou Y; Ge S; Li X; Wang C; He H; He L
    Chem Biol Interact; 2021 Apr; 338():109420. PubMed ID: 33609497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies.
    Seyedpour S; Khodaei B; Loghman AH; Seyedpour N; Kisomi MF; Balibegloo M; Nezamabadi SS; Gholami B; Saghazadeh A; Rezaei N
    J Cell Physiol; 2021 Apr; 236(4):2364-2392. PubMed ID: 32901936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2.
    Williams-Noonan BJ; Todorova N; Kulkarni K; Aguilar MI; Yarovsky I
    J Phys Chem B; 2021 Mar; 125(10):2533-2550. PubMed ID: 33657325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.