These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34139211)

  • 1. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging.
    Jang BS; Lim YJ; Song C; Jeon SH; Lee KW; Kang SB; Lee YJ; Kim JS
    Radiother Oncol; 2021 Aug; 161():183-190. PubMed ID: 34139211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Using MR Images and Deep Learning Neural Networks.
    Cingoz E; Ertas G; Kaval G; Azamat S; Karaman S; Kulle CB; Berker N; Cingöz M; Dagoglu Sakin N; Comert RG; Buyuk M; Kartal MGD
    Curr Med Imaging; 2024; 20():e15734056309748. PubMed ID: 38874041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.
    Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW
    Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer].
    Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer.
    Kim S; Han K; Seo N; Kim HJ; Kim MJ; Koom WS; Ahn JB; Lim JS
    Eur Radiol; 2018 Dec; 28(12):5231-5240. PubMed ID: 29858637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The value of MR T2WI signal intensity related parameters for predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer].
    Wan LJ; Zhang CD; Zhang HM; Meng YK; Ye F; Liu Y; Zhao XM; Zhou CW
    Zhonghua Zhong Liu Za Zhi; 2019 Nov; 41(11):837-843. PubMed ID: 31770851
    [No Abstract]   [Full Text] [Related]  

  • 9. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging for predicting tumor clearance of the mesorectal fascia after neoadjuvant chemotherapy and radiation therapy.
    Park MJ; Kim SH; Lee SJ; Jang KM; Rhim H
    Radiology; 2011 Sep; 260(3):771-80. PubMed ID: 21846762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning model based on endoscopic images predicting treatment response in locally advanced rectal cancer undergo neoadjuvant chemoradiotherapy: a multicenter study.
    Zhang J; Liu R; Wang X; Zhang S; Shao L; Liu J; Zhao J; Wang Q; Tian J; Lu Y
    J Cancer Res Clin Oncol; 2024 Jul; 150(7):350. PubMed ID: 39001926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H
    Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 13. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer].
    Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826
    [No Abstract]   [Full Text] [Related]  

  • 14. Diffusion-weighted MRI and MR- volumetry--in the evaluation of tumor response after preoperative chemoradiotherapy in patients with locally advanced rectal cancer.
    Birlik B; Obuz F; Elibol FD; Celik AO; Sokmen S; Terzi C; Sagol O; Sarioglu S; Gorken I; Oztop I
    Magn Reson Imaging; 2015 Feb; 33(2):201-12. PubMed ID: 25460330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy.
    Iannicelli E; Di Pietropaolo M; Pilozzi E; Osti MF; Valentino M; Masoni L; Ferri M
    Abdom Radiol (NY); 2016 Oct; 41(10):1906-17. PubMed ID: 27323759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI.
    Bellini D; Carbone I; Rengo M; Vicini S; Panvini N; Caruso D; Iannicelli E; Tombolini V; Laghi A
    Tomography; 2022 Aug; 8(4):2059-2072. PubMed ID: 36006071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer.
    Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS
    Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Learning Model to Predict the Response to Neoadjuvant Chemoradiotherapy by the Pretreatment Apparent Diffusion Coefficient Images of Locally Advanced Rectal Cancer.
    Zhu HT; Zhang XY; Shi YJ; Li XT; Sun YS
    Front Oncol; 2020; 10():574337. PubMed ID: 33194680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images.
    Shu Z; Fang S; Ye Q; Mao D; Cao H; Pang P; Gong X
    Abdom Radiol (NY); 2019 Nov; 44(11):3775-3784. PubMed ID: 30852633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer.
    Intven M; Monninkhof EM; Reerink O; Philippens ME
    Acta Oncol; 2015 Nov; 54(10):1729-36. PubMed ID: 25914930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.