These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34139383)

  • 1. Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis.
    Berta L; Rizzetto F; De Mattia C; Lizio D; Felisi M; Colombo PE; Carrazza S; Gelmini S; Bianchi L; Artioli D; Travaglini F; Vanzulli A; Torresin A;
    Phys Med; 2021 Jul; 87():115-122. PubMed ID: 34139383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volumetric Pancreas Segmentation on Computed Tomography: Accuracy and Efficiency of a Convolutional Neural Network Versus Manual Segmentation in 3D Slicer in the Context of Interreader Variability of Expert Radiologists.
    Khasawneh H; Patra A; Rajamohan N; Suman G; Klug J; Majumder S; Chari ST; Korfiatis P; Goenka AH
    J Comput Assist Tomogr; 2022 Nov-Dec 01; 46(6):841-847. PubMed ID: 36055122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction.
    Shan F; Gao Y; Wang J; Shi W; Shi N; Han M; Xue Z; Shen D; Shi Y
    Med Phys; 2021 Apr; 48(4):1633-1645. PubMed ID: 33225476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections.
    Chlebus G; Meine H; Thoduka S; Abolmaali N; van Ginneken B; Hahn HK; Schenk A
    PLoS One; 2019; 14(5):e0217228. PubMed ID: 31107915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network.
    Gerard SE; Herrmann J; Xin Y; Martin KT; Rezoagli E; Ippolito D; Bellani G; Cereda M; Guo J; Hoffman EA; Kaczka DW; Reinhardt JM
    Sci Rep; 2021 Jan; 11(1):1455. PubMed ID: 33446781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoLe-CNN+: Context learning - Convolutional neural network for COVID-19-Ground-Glass-Opacities detection and segmentation.
    Pezzano G; Díaz O; Ripoll VR; Radeva P
    Comput Biol Med; 2021 Sep; 136():104689. PubMed ID: 34364263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.
    Cheimariotis GA; Al-Mashat M; Haris K; Aletras AH; Jögi J; Bajc M; Maglaveras N; Heiberg E
    Ann Nucl Med; 2018 Feb; 32(2):94-104. PubMed ID: 29236220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets.
    Pusterla O; Heule R; Santini F; Weikert T; Willers C; Andermatt S; Sandkühler R; Nyilas S; Latzin P; Bieri O; Bauman G
    Magn Reson Med; 2022 Jul; 88(1):391-405. PubMed ID: 35348244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2D-3D hybrid convolutional neural network for lung lobe auto-segmentation on standard slice thickness computed tomography of patients receiving radiotherapy.
    Gu H; Gan W; Zhang C; Feng A; Wang H; Huang Y; Chen H; Shao Y; Duan Y; Xu Z
    Biomed Eng Online; 2021 Sep; 20(1):94. PubMed ID: 34556141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a quantitative segmentation model to assess the effect of comorbidity on patients with COVID-19.
    Zhang C; Yang G; Cai C; Xu Z; Wu H; Guo Y; Xie Z; Shi H; Cheng G; Wang J
    Eur J Med Res; 2020 Oct; 25(1):49. PubMed ID: 33046116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.
    Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW
    Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks.
    Sales Barros R; Tolhuisen ML; Boers AM; Jansen I; Ponomareva E; Dippel DWJ; van der Lugt A; van Oostenbrugge RJ; van Zwam WH; Berkhemer OA; Goyal M; Demchuk AM; Menon BK; Mitchell P; Hill MD; Jovin TG; Davalos A; Campbell BCV; Saver JL; Roos YBWEM; Muir KW; White P; Bracard S; Guillemin F; Olabarriaga SD; Majoie CBLM; Marquering HA
    J Neurointerv Surg; 2020 Sep; 12(9):848-852. PubMed ID: 31871069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute respiratory distress syndrome-A comparative diagnostic study.
    Klapsing P; Herrmann P; Quintel M; Moerer O
    J Crit Care; 2017 Dec; 42():184-191. PubMed ID: 28759880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images.
    Qi Q; Qi S; Wu Y; Li C; Tian B; Xia S; Ren J; Yang L; Wang H; Yu H
    Comput Biol Med; 2022 Feb; 141():105182. PubMed ID: 34979404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.