BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34139483)

  • 1. The effect of injurious compression on the elastic, hyper-elastic and visco-elastic properties of porcine peripheral nerves.
    Fraser S; Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM
    J Mech Behav Biomed Mater; 2021 Sep; 121():104624. PubMed ID: 34139483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards viscoelastic characterisation of the human ulnar nerve: An early assessment using embalmed cadavers.
    Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM; Wilton JC
    Med Eng Phys; 2019 Feb; 64():15-22. PubMed ID: 30553556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends.
    Temple DK; Cederlund AA; Lawless BM; Aspden RM; Espino DM
    BMC Musculoskelet Disord; 2016 Oct; 17(1):419. PubMed ID: 27716169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized static and dynamic evaluation of myocardial tissue properties.
    Ramadan S; Paul N; Naguib HE
    Biomed Mater; 2017 Mar; 12(2):025013. PubMed ID: 28065929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests.
    Kirby MA; Pitre JJ; Liou HC; Li DS; Wang RK; Pelivanov I; O'Donnell M; Shen TT
    Ophthalmol Sci; 2021 Dec; 1(4):100058. PubMed ID: 36246948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Viscoelasticity and Surface Properties of Porcine Left Anterior Descending Coronary Arteries.
    Burton HE; Freij JM; Espino DM
    Cardiovasc Eng Technol; 2017 Mar; 8(1):41-56. PubMed ID: 27957718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differences in measured prostate material properties between probing and unconfined compression testing methods.
    Johnson B; Campbell S; Campbell-Kyureghyan N
    Med Eng Phys; 2020 Jun; 80():44-51. PubMed ID: 32381284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic shear properties of porcine temporomandibular joint disc.
    Wu Y; Kuo J; Wright GJ; Cisewski SE; Wei F; Kern MJ; Yao H
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):156-63. PubMed ID: 25865544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension.
    Li Y; Zhang W; Lu YC; Wu CW
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105108. PubMed ID: 32736277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of human periodontal ligament:
    Wu B; Zhao S; Shi H; Lu R; Yan B; Ma S; Markert B
    Angle Orthod; 2019 May; 89(3):480-487. PubMed ID: 30605020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of abdominal organs under tension with special reference to increasing strain rate.
    Johnson B; Campbell S; Campbell-Kyureghyan N
    J Biomech; 2020 Aug; 109():109914. PubMed ID: 32807339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency dependent viscoelastic properties of porcine brain tissue.
    Li W; Shepherd DET; Espino DM
    J Mech Behav Biomed Mater; 2020 Feb; 102():103460. PubMed ID: 31590055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and comparison of hyper-viscoelastic properties of normal and osteoporotic bone using stress-relaxation experiment.
    Niki Y; Seifzadeh A
    J Mech Behav Biomed Mater; 2021 Nov; 123():104754. PubMed ID: 34391015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling.
    Nguyen BV; Wang QG; Kuiper NJ; El Haj AJ; Thomas CR; Zhang Z
    J R Soc Interface; 2010 Dec; 7(53):1723-33. PubMed ID: 20519215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale assessment of corneal viscoelastic properties under physiological pressures.
    Kazaili A; Geraghty B; Akhtar R
    J Mech Behav Biomed Mater; 2019 Dec; 100():103375. PubMed ID: 31376792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-related viscoelastic properties of the human incisor periodontal ligament under dynamic compressive loading.
    Wu B; Pu P; Zhao S; Izadikhah I; Shi H; Liu M; Lu R; Yan B; Ma S; Markert B
    PLoS One; 2020; 15(7):e0235822. PubMed ID: 32658896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage.
    Protsenko DE; Zemek A; Wong BJ
    Lasers Surg Med; 2008 Mar; 40(3):202-10. PubMed ID: 18366085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.