BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34139842)

  • 21. Highly deformable bi-continuous conducting polymer hydrogels for electrochemical energy storage.
    Wang R; Peng Y; Liu C; Zheng D; Yu J
    J Colloid Interface Sci; 2024 Jun; 673():143-152. PubMed ID: 38875785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid polymer electrolytes reinforced with porous polypropylene separators for all-solid-state supercapacitors.
    Liu W; Li Z; Pan F; He Q; Zhang Q
    RSC Adv; 2023 Nov; 13(49):34652-34659. PubMed ID: 38024981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Powder Self-Healable Hydrogel Electrolyte for Flexible Hybrid Supercapacitors with High Energy Density and Sustainability.
    Huang H; Han L; Fu X; Wang Y; Yang Z; Pan L; Xu M
    Small; 2021 Mar; 17(10):e2006807. PubMed ID: 33590690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalized Metallic 2D Transition Metal Dichalcogenide-Based Solid-State Electrolyte for Flexible All-Solid-State Supercapacitors.
    Bagheri A; Bellani S; Beydaghi H; Eredia M; Najafi L; Bianca G; Zappia MI; Safarpour M; Najafi M; Mantero E; Sofer Z; Hou G; Pellegrini V; Feng X; Bonaccorso F
    ACS Nano; 2022 Oct; 16(10):16426-16442. PubMed ID: 36194759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Functionalization of Electrodes and Synthesis of Dual-Phase Solid Electrolytes for Structural Supercapacitors.
    Huang F; Zhou Y; Sha Z; Peng S; Chang W; Cheng X; Zhang J; Brown SA; Han Z; Wang CH
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30857-30871. PubMed ID: 35761422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the Properties of Conductive Polymer Hydrogels by Freeze-Thaw Cycles for High-Performance Flexible Supercapacitors.
    Li W; Lu H; Zhang N; Ma M
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20142-20149. PubMed ID: 28557420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Silk Protein-Based Eutectogel as a Freeze-Resistant and Flexible Electrolyte for Zn-Ion Hybrid Supercapacitors.
    Li Z; Xu X; Jiang Z; Chen J; Tu J; Wang X; Gu C
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44821-44831. PubMed ID: 36125802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.
    Tang Q; Wang W; Wang G
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27701-27709. PubMed ID: 27662072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular Anchoring of Polyoxometalate Amphiphiles into Nafion Nanophases for Enhanced Proton Conduction.
    He H; Zhu Y; Li T; Song S; Zhai L; Li X; Wu L; Li H
    ACS Nano; 2022 Nov; 16(11):19240-19252. PubMed ID: 36315623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Deformable, Conductive Double-Network Hydrogel Electrolytes for Durable and Flexible Supercapacitors.
    Liu S; Zhong Y; Zhang X; Pi M; Wang X; Zhu R; Cui W; Ran R
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15641-15652. PubMed ID: 35317550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-Pot Synthesis of a Double-Network Hydrogel Electrolyte with Extraordinarily Excellent Mechanical Properties for a Highly Compressible and Bendable Flexible Supercapacitor.
    Lin T; Shi M; Huang F; Peng J; Bai Q; Li J; Zhai M
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29684-29693. PubMed ID: 30088910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors.
    Zhou G; Yang L; Li W; Chen C; Liu Q
    iScience; 2020 Sep; 23(9):101502. PubMed ID: 32916631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.
    Li H; Lv T; Li N; Yao Y; Liu K; Chen T
    Nanoscale; 2017 Nov; 9(46):18474-18481. PubMed ID: 29159361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.
    Tang C; Hackenberg K; Fu Q; Ajayan PM; Ardebili H
    Nano Lett; 2012 Mar; 12(3):1152-6. PubMed ID: 22369495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of Adhesion and Anti-Freezing Properties in Hydrogel Electrolytes for Low-Temperature Aqueous-Based Hybrid Capacitors.
    Nan J; Sun Y; Yang F; Zhang Y; Li Y; Wang Z; Wang C; Wang D; Chu F; Wang C; Zhu T; Jiang J
    Nanomicro Lett; 2023 Nov; 16(1):22. PubMed ID: 37982913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Building Ion-Conduction Highways in Polymeric Electrolytes by Manipulating Protein Configuration.
    Fu X; Li C; Wang Y; Kovatch LP; Scudiero L; Liu J; Zhong W
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4726-4736. PubMed ID: 29334456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyoxometalate-Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications.
    Zhai L; Li H
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31547150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PVDF/Palygorskite Nanowire Composite Electrolyte for 4 V Rechargeable Lithium Batteries with High Energy Density.
    Yao P; Zhu B; Zhai H; Liao X; Zhu Y; Xu W; Cheng Q; Jayyosi C; Li Z; Zhu J; Myers KM; Chen X; Yang Y
    Nano Lett; 2018 Oct; 18(10):6113-6120. PubMed ID: 30169958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells.
    Lee HJ; Kim JH; Won JH; Lim JM; Hong YT; Lee SY
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5034-43. PubMed ID: 23672268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.