BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 34139912)

  • 1. Identification of key genes and pathways involved in abdominal aortic aneurysm initiation and progression.
    Su Z; Gu Y
    Vascular; 2022 Aug; 30(4):639-649. PubMed ID: 34139912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key genes and pathways in abdominal aortic aneurysm by integrated bioinformatics analysis.
    Liu Y; Wang X; Wang H; Hu T
    J Int Med Res; 2020 Apr; 48(4):300060519894437. PubMed ID: 31885343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key microRNAs and genes associated with abdominal aortic aneurysm based on the gene expression profile.
    Yang P; Cai Z; Wu K; Hu Y; Liu L; Liao M
    Exp Physiol; 2020 Jan; 105(1):160-173. PubMed ID: 31553078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of crucial genes involved in pathogenesis of regional weakening of the aortic wall.
    Zu HL; Liu HW; Wang HY
    Hereditas; 2021 Dec; 158(1):35. PubMed ID: 34852854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics Analysis Reveals the Potential Diagnostic Biomarkers for Abdominal Aortic Aneurysm.
    Xie X; Wang EC; Xu D; Shu X; Zhao YF; Guo D; Fu W; Wang L
    Front Cardiovasc Med; 2021; 8():656263. PubMed ID: 34355024
    [No Abstract]   [Full Text] [Related]  

  • 6. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms.
    Gao H; Wang L; Ren J; Liu Y; Liang S; Zhang B; Sun X
    Gene; 2022 Jun; 827():146472. PubMed ID: 35381314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TYROBP as a molecular target in cholangiocarcinoma, renal cancer and abdominal aortic aneurysm.
    Jia W; Chen L; Hou S; Kang C; Deng H
    Medicine (Baltimore); 2024 Jan; 103(1):e36843. PubMed ID: 38181271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of key genes associated with the human abdominal aortic aneurysm based on the gene expression profile.
    Chen X; Zheng C; He Y; Tian L; Li J; Li D; Jin W; Li M; Zheng S
    Mol Med Rep; 2015 Dec; 12(6):7891-8. PubMed ID: 26498477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of the circRNA-miRNA-mRNA Regulatory Network of an Abdominal Aortic Aneurysm to Explore Its Potential Pathogenesis.
    Zhang H; Bian C; Tu S; Yin F; Guo P; Zhang J; Wu Y; Yin Y; Guo J; Han Y
    Dis Markers; 2021; 2021():9916881. PubMed ID: 34777635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR-30a-GNG2 and miR-15b-ACSS2 Interaction Pairs May Be Potentially Crucial for Development of Abdominal Aortic Aneurysm by Influencing Inflammation.
    Gan S; Pan Y; Mao J
    DNA Cell Biol; 2019 Dec; 38(12):1540-1556. PubMed ID: 31730405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis.
    Vastrad B; Vastrad C; Tengli A; Iliger S
    Arch Gynecol Obstet; 2018 Jan; 297(1):161-183. PubMed ID: 29063236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role and Mechanism of SIRT6 in Regulating Phenotype Transformation of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm.
    Guan X; Xin H; Xu M; Ji J; Li J
    Comput Math Methods Med; 2022; 2022():3200798. PubMed ID: 35035519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Key Genes and Potential Therapeutic Compounds for Abdominal Aortic Aneurysm Based on a Weighted Correlation Network Analysis.
    Li L; Kan K; Pallavi P; Keese M
    Biomedicines; 2022 May; 10(5):. PubMed ID: 35625787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening key genes for abdominal aortic aneurysm based on gene expression omnibus dataset.
    Wan L; Huang J; Ni H; Yu G
    BMC Cardiovasc Disord; 2018 Feb; 18(1):34. PubMed ID: 29439675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis.
    Chen X; Cai S; Li B; Zhang X; Li W; Linag H; Cao X
    Exp Ther Med; 2018 Aug; 16(2):1121-1130. PubMed ID: 30112053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network.
    Duan Y; Xie E; Liu C; Sun J; Deng J
    Biomed Res Int; 2022; 2022():7173972. PubMed ID: 35299890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics analysis of common key genes and pathways of intracranial, abdominal, and thoracic aneurysms.
    Bi S; Liu R; He L; Li J; Gu J
    BMC Cardiovasc Disord; 2021 Jan; 21(1):14. PubMed ID: 33407182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis.
    Yu C; Chen F; Jiang J; Zhang H; Zhou M
    Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.