BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34140147)

  • 1. Diaporthe amygdali, a species complex or a complex species?
    Hilário S; Santos L; Alves A
    Fungal Biol; 2021 Jul; 125(7):505-518. PubMed ID: 34140147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Genealogical Concordance and Coalescent-Based Species Delimitation to Assess Species Boundaries in the
    Hilário S; Gonçalves MFM; Alves A
    J Fungi (Basel); 2021 Jun; 7(7):. PubMed ID: 34202282
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Pereira DS; Hilário S; Gonçalves MFM; Phillips AJL
    Microorganisms; 2023 Nov; 11(11):. PubMed ID: 38004729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of tree priors in species delimitation and phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae).
    da Cruz MOR; Weksler M
    Mol Phylogenet Evol; 2018 Feb; 119():1-12. PubMed ID: 29107618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): insights on diversity, distributions, and a comparison of species tree and concatenated topologies.
    Leavitt SD; Esslinger TL; Spribille T; Divakar PK; Thorsten Lumbsch H
    Mol Phylogenet Evol; 2013 Jan; 66(1):138-52. PubMed ID: 23017822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species delimitation in the lichenized fungal genus Vulpicida (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches.
    Saag L; Mark K; Saag A; Randlane T
    Am J Bot; 2014 Dec; 101(12):2169-82. PubMed ID: 25480713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limitations of Species Delimitation Based on Phylogenetic Analyses: A Case Study in the Hypogymnia hypotrypa Group (Parmeliaceae, Ascomycota).
    Wei X; McCune B; Lumbsch HT; Li H; Leavitt S; Yamamoto Y; Tchabanenko S; Wei J
    PLoS One; 2016; 11(11):e0163664. PubMed ID: 27828951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex.
    Pavlic D; Slippers B; Coutinho TA; Wingfield MJ
    Mol Phylogenet Evol; 2009 May; 51(2):259-68. PubMed ID: 19152837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptic diversity, pathogenicity, and evolutionary species boundaries in Cercospora populations associated with Cercospora leaf spot of Beta vulgaris.
    Vaghefi N; Kikkert JR; Hay FS; Carver GD; Koenick LB; Bolton MD; Hanson LE; Secor GA; Pethybridge SJ
    Fungal Biol; 2018 Apr; 122(4):264-282. PubMed ID: 29551200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species boundaries in plant pathogenic fungi: a Colletotrichum case study.
    Liu F; Wang M; Damm U; Crous PW; Cai L
    BMC Evol Biol; 2016 Apr; 16():81. PubMed ID: 27080690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering cryptic species in the Aspiciliella intermutans complex (Megasporaceae, Ascomycota) - First results using gene concatenation and coalescent-based species tree approaches.
    Zakeri Z; Otte V; Sipman H; Malíček J; Cubas P; Rico VJ; Lenzová V; Svoboda D; Divakar PK
    PLoS One; 2019; 14(5):e0216675. PubMed ID: 31136587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.
    Udayanga D; Castlebury LA; Rossman AY; Chukeatirote E; Hyde KD
    Fungal Biol; 2015 May; 119(5):383-407. PubMed ID: 25937066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae).
    Bagley JC; Alda F; Breitman MF; Bermingham E; van den Berghe EP; Johnson JB
    PLoS One; 2015; 10(4):e0121139. PubMed ID: 25849959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilocus phylogenetic and coalescent-based methods reveal dilemma in generic limits, cryptic species, and a prevalent intercontinental disjunct distribution in Geopyxis (Pyronemataceae s. l., Pezizomycetes).
    Wang XH; Huhtinen S; Hansen K
    Mycologia; 2016; 108(6):1189-1215. PubMed ID: 27760850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA.
    Lang AS; Bocksberger G; Stech M
    Mol Phylogenet Evol; 2015 Nov; 92():217-25. PubMed ID: 26149758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species delimitation in the cyanolichen genus Rostania.
    Košuthová A; Bergsten J; Westberg M; Wedin M
    BMC Evol Biol; 2020 Sep; 20(1):115. PubMed ID: 32912146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescent-based species delimitation in North American pinyon pines using low-copy nuclear genes and plastomes.
    Montes JR; Peláez P; Moreno-Letelier A; Gernandt DS
    Am J Bot; 2022 May; 109(5):706-726. PubMed ID: 35526278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mating type genes in the genus Neofusicoccum: Mating strategies and usefulness in species delimitation.
    Lopes A; Phillips AJ; Alves A
    Fungal Biol; 2017 Apr; 121(4):394-404. PubMed ID: 28317541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition.
    Santos JM; Correia VG; Phillips AJ
    Fungal Biol; 2010; 114(2-3):255-70. PubMed ID: 20943136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales).
    Parnmen S; Rangsiruji A; Mongkolsuk P; Boonpragob K; Nutakki A; Lumbsch HT
    PLoS One; 2012; 7(12):e52245. PubMed ID: 23272229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.