BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34140515)

  • 1. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation.
    Hollmann B; Perkins M; Chauhan VM; Aylott JW; Hardie KR
    NPJ Biofilms Microbiomes; 2021 Jun; 7(1):50. PubMed ID: 34140515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric Imaging of the in Situ pH Distribution of Biofilms by Use of Fluorescent Mesoporous Silica Nanosensors.
    Fulaz S; Hiebner D; Barros CHN; Devlin H; Vitale S; Quinn L; Casey E
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32679-32688. PubMed ID: 31418546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors.
    Elsutohy MM; Chauhan VM; Markus R; Kyyaly MA; Tendler SJB; Aylott JW
    Nanoscale; 2017 May; 9(18):5904-5911. PubMed ID: 28436517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.
    Søndergaard RV; Henriksen JR; Andresen TL
    Nat Protoc; 2014 Dec; 9(12):2841-58. PubMed ID: 25411952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range.
    Chauhan VM; Burnett GR; Aylott JW
    Analyst; 2011 May; 136(9):1799-801. PubMed ID: 21416087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the pharyngeal and intestinal pH of Caenorhabditis elegans and real-time luminal pH oscillations using extended dynamic range pH-sensitive nanosensors.
    Chauhan VM; Orsi G; Brown A; Pritchard DI; Aylott JW
    ACS Nano; 2013 Jun; 7(6):5577-87. PubMed ID: 23668893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells.
    Sun H; Andresen TL; Benjaminsen RV; Almdal K
    J Biomed Nanotechnol; 2009 Dec; 5(6):676-82. PubMed ID: 20201229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array.
    Yeor-Davidi E; Zverzhinetsky M; Krivitsky V; Patolsky F
    J Nanobiotechnology; 2020 May; 18(1):81. PubMed ID: 32448291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture.
    Stanca SE; Nietzsche S; Fritzsche W; Cranfield CG; Biskup C
    Nanotechnology; 2010 Feb; 21(5):055501. PubMed ID: 20023314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the design of fluorescent ratiometric nanosensors.
    Doussineau T; Schulz A; Lapresta-Fernandez A; Moro A; Körsten S; Trupp S; Mohr GJ
    Chemistry; 2010 Sep; 16(34):10290-9. PubMed ID: 20665579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors.
    Sun H; Almdal K; Andresen TL
    Chem Commun (Camb); 2011 May; 47(18):5268-70. PubMed ID: 21451849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms.
    Hunter RC; Beveridge TJ
    Appl Environ Microbiol; 2005 May; 71(5):2501-10. PubMed ID: 15870340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions.
    Schlafer S; Baelum V; Dige I
    J Microbiol Methods; 2018 Sep; 152():194-200. PubMed ID: 30144480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.
    Schlafer S; Garcia JE; Greve M; Raarup MK; Nyvad B; Dige I
    Appl Environ Microbiol; 2015 Feb; 81(4):1267-73. PubMed ID: 25501477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Responsive Hybrid Nanoparticles for Imaging Spatiotemporal pH Changes in Biofilm-Dentin Microenvironments.
    Tan GR; Hsu CS; Zhang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46247-46259. PubMed ID: 34570460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescent Nanosensors for Ratiometric Monitoring of Three-Dimensional Oxygen Gradients in Laboratory and Clinical Pseudomonas aeruginosa Biofilms.
    Jewell MP; Galyean AA; Kirk Harris J; Zemanick ET; Cash KJ
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31420335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized ratiometric fluorescence nanosensors based on carbon dots and an advanced chemometric model.
    Yan XF; Chen ZP; Huang Y; Kang C; Yu RQ
    Talanta; 2019 Jan; 192():233-240. PubMed ID: 30348383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.