These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34140536)

  • 1. Fabrication and characterization of resistive double square loop arrays for ultra-wide bandwidth microwave absorption.
    Jeong JY; Lee JR; Park H; Jung J; Choi DS; Jeon EC; Shin J; Han JS; Je TJ
    Sci Rep; 2021 Jun; 11(1):12767. PubMed ID: 34140536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrawide Bandwidth Electromagnetic Wave Absorbers Composed of Double-Layer Frequency Selective Surfaces with Different Patterns.
    Liu T; Kim SS
    Sci Rep; 2018 Sep; 8(1):13889. PubMed ID: 30224657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter.
    Cho JY; Oh YC; Shin SC; Lee SK; Seo HS; Lee SE
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.
    Liu H; Meng X; Yang X; Jing M; Shen X; Dong M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2878-84. PubMed ID: 24734704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Manufacturing of a Hexapattern Frequency Selective Surface Absorber for Aerospace Stealth Application.
    Priyanka ; Mohanty S; Alegaonkar PS; Baskey HB
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):37107-37115. PubMed ID: 37478339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrawide Bandwidth Electromagnetic Wave Absorbers Using a High-capacitive Folded Spiral Frequency Selective Surface in a Multilayer Structure.
    Liu T; Kim SS
    Sci Rep; 2019 Nov; 9(1):16494. PubMed ID: 31712676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable Origami/Kirigami Metamaterial Absorbers Developed by Fast Inverse Design and Low-Concentration MXene Inks.
    Li C; Wang G; Peng M; Liu C; Feng T; Wang Y; Qin F
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42448-42460. PubMed ID: 39078617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origami-based microwave absorber with a reconfigurable bandwidth.
    Chen X; Li W; Wu Z; Zhang Z; Zou Y
    Opt Lett; 2021 Mar; 46(6):1349-1352. PubMed ID: 33720184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrawide meta-film replication process for the mass production of a flexible microwave absorbing meta-surface.
    Han JS; Park H; Jeong JY; Jung J; Gwak EJ; Jeon EC; Je TJ; Shin J; Choi DS
    Opt Express; 2022 Aug; 30(16):29760-29771. PubMed ID: 36299143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extremely wideband and lightweight metamaterial absorber.
    Shen Y; Pei Z; Pang Y; Wang J; Zhang A; Qu S
    J Appl Phys; 2015 Jun; 117(22):224503. PubMed ID: 26130845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.
    Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Demonstration of Printed Graphene Nano-flakes Enabled Flexible and Conformable Wideband Radar Absorbers.
    Huang X; Pan K; Hu Z
    Sci Rep; 2016 Dec; 6():38197. PubMed ID: 27924823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer.
    Ren J; Yin JY
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Wideband Flexible Absorber in Microwave Frequency Band.
    Fan S; Song Y
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study on Microwave Absorption Properties of Carbon Black and Ni
    Ibrahim IR; Matori KA; Ismail I; Awang Z; Rusly SNA; Nazlan R; Mohd Idris F; Muhammad Zulkimi MM; Abdullah NH; Mustaffa MS; Shafiee FN; Ertugrul M
    Sci Rep; 2020 Feb; 10(1):3135. PubMed ID: 32081972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave annealing of indium tin oxide nanoparticle ink patterned by ink-jet printing.
    Kim JW; Choi JW; Hong SJ; Kwak MG
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6005-10. PubMed ID: 24205589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.