These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 34140542)
1. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L; Chafai L; Bailleul B Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542 [TBL] [Abstract][Full Text] [Related]
2. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
3. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
4. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R; Ann Pinto E; Wilhelm C; Richter M J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213 [TBL] [Abstract][Full Text] [Related]
5. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287 [TBL] [Abstract][Full Text] [Related]
6. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. Lavaud J; Rousseau B; Etienne AL FEBS Lett; 2002 Jul; 523(1-3):163-6. PubMed ID: 12123825 [TBL] [Abstract][Full Text] [Related]
7. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333 [TBL] [Abstract][Full Text] [Related]
8. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
9. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma. Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087 [TBL] [Abstract][Full Text] [Related]
10. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Cruz S; Goss R; Wilhelm C; Leegood R; Horton P; Jakob T J Exp Bot; 2011 Jan; 62(2):509-19. PubMed ID: 20876335 [TBL] [Abstract][Full Text] [Related]
11. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
12. The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress. Kuczynska P; Jemiola-Rzeminska M; Nowicka B; Jakubowska A; Strzalka W; Burda K; Strzalka K Plant Physiol Biochem; 2020 May; 152():125-137. PubMed ID: 32416342 [TBL] [Abstract][Full Text] [Related]
13. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. Kansy M; Gurowietz A; Wilhelm C; Goss R BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846 [TBL] [Abstract][Full Text] [Related]
14. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
15. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. Lacour T; Babin M; Lavaud J J Phycol; 2020 Apr; 56(2):245-263. PubMed ID: 31674660 [TBL] [Abstract][Full Text] [Related]
16. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. Brunet C; Chandrasekaran R; Barra L; Giovagnetti V; Corato F; Ruban AV PLoS One; 2014; 9(1):e87015. PubMed ID: 24475212 [TBL] [Abstract][Full Text] [Related]
17. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related]
18. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis. Chen Z; Gallie DR Plant Physiol Biochem; 2012 Sep; 58():66-82. PubMed ID: 22771437 [TBL] [Abstract][Full Text] [Related]
19. The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Ruban A; Lavaud J; Rousseau B; Guglielmi G; Horton P; Etienne AL Photosynth Res; 2004; 82(2):165-75. PubMed ID: 16151872 [TBL] [Abstract][Full Text] [Related]
20. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Beer A; Gundermann K; Beckmann J; Büchel C Biochemistry; 2006 Oct; 45(43):13046-53. PubMed ID: 17059221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]