BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 34140671)

  • 1. Molecular mechanisms underlying nucleotide repeat expansion disorders.
    Malik I; Kelley CP; Wang ET; Todd PK
    Nat Rev Mol Cell Biol; 2021 Sep; 22(9):589-607. PubMed ID: 34140671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New pathologic mechanisms in nucleotide repeat expansion disorders.
    Rodriguez CM; Todd PK
    Neurobiol Dis; 2019 Oct; 130():104515. PubMed ID: 31229686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partners in crime: Proteins implicated in RNA repeat expansion diseases.
    Baud A; Derbis M; Tutak K; Sobczak K
    Wiley Interdiscip Rev RNA; 2022 Jul; 13(4):e1709. PubMed ID: 35229468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
    Beckers J; Tharkeshwar AK; Van Damme P
    Autophagy; 2021 Nov; 17(11):3306-3322. PubMed ID: 33632058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.
    Zamiri B; Reddy K; Macgregor RB; Pearson CE
    J Biol Chem; 2014 Feb; 289(8):4653-9. PubMed ID: 24371143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeat-associated non-AUG translation and its impact in neurodegenerative disease.
    Kearse MG; Todd PK
    Neurotherapeutics; 2014 Oct; 11(4):721-31. PubMed ID: 25005000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Mechanisms of Neurodegeneration Related to
    Babić Leko M; Župunski V; Kirincich J; Smilović D; Hortobágyi T; Hof PR; Šimić G
    Behav Neurol; 2019; 2019():2909168. PubMed ID: 30774737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies.
    Schwartz JL; Jones KL; Yeo GW
    Crit Rev Biochem Mol Biol; 2021 Feb; 56(1):31-53. PubMed ID: 33172304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspects of degradation and translation of the expanded C9orf72 hexanucleotide repeat RNA.
    Mori K; Gotoh S; Ikeda M
    J Neurochem; 2023 Jul; 166(2):156-171. PubMed ID: 37277972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
    Vatovec S; Kovanda A; Rogelj B
    Neurobiol Aging; 2014 Oct; 35(10):2421.e1-2421.e12. PubMed ID: 24836899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.
    Wen X; Westergard T; Pasinelli P; Trotti D
    Neurosci Lett; 2017 Jan; 636():16-26. PubMed ID: 27619540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RAN translation-What makes it run?
    Green KM; Linsalata AE; Todd PK
    Brain Res; 2016 Sep; 1647():30-42. PubMed ID: 27060770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screening yields several small-molecule inhibitors of repeat-associated non-AUG translation.
    Green KM; Sheth UJ; Flores BN; Wright SE; Sutter AB; Kearse MG; Barmada SJ; Ivanova MI; Todd PK
    J Biol Chem; 2019 Dec; 294(49):18624-18638. PubMed ID: 31649034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R-LOOPs on Short Tandem Repeat Expansion Disorders in Neurodegenerative Diseases.
    Wu Y; Song T; Xu Q
    Mol Neurobiol; 2023 Dec; 60(12):7185-7195. PubMed ID: 37540313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.
    Todd TW; Petrucelli L
    J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures.
    Reddy K; Zamiri B; Stanley SYR; Macgregor RB; Pearson CE
    J Biol Chem; 2013 Apr; 288(14):9860-9866. PubMed ID: 23423380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?
    Mizielinska S; Isaacs AM
    Curr Opin Neurol; 2014 Oct; 27(5):515-23. PubMed ID: 25188012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions.
    Cooper-Knock J; Walsh MJ; Higginbottom A; Robin Highley J; Dickman MJ; Edbauer D; Ince PG; Wharton SB; Wilson SA; Kirby J; Hautbergue GM; Shaw PJ
    Brain; 2014 Jul; 137(Pt 7):2040-51. PubMed ID: 24866055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD.
    Wang S; Latallo MJ; Zhang Z; Huang B; Bobrovnikov DG; Dong D; Livingston NM; Tjoeng W; Hayes LR; Rothstein JD; Ostrow LW; Wu B; Sun S
    Nat Commun; 2021 Aug; 12(1):4908. PubMed ID: 34389711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteinopathies associated to repeat expansion disorders.
    Fourier A; Quadrio I
    J Neural Transm (Vienna); 2022 Feb; 129(2):173-185. PubMed ID: 35067760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.