These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34140682)

  • 41. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD.
    Burton ZF
    Transcription; 2014; 5(3):e28674. PubMed ID: 25764332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases.
    Girbig M; Misiaszek AD; Müller CW
    Nat Rev Mol Cell Biol; 2022 Sep; 23(9):603-622. PubMed ID: 35505252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II.
    Viktorovskaya OV; Engel KL; French SL; Cui P; Vandeventer PJ; Pavlovic EM; Beyer AL; Kaplan CD; Schneider DA
    Cell Rep; 2013 Sep; 4(5):974-84. PubMed ID: 23994471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Epigenetic DNA Modification N
    Wang W; Xu L; Hu L; Chong J; He C; Wang D
    J Am Chem Soc; 2017 Oct; 139(41):14436-14442. PubMed ID: 28933854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Giardia lamblia RNA polymerase II: amanitin-resistant transcription.
    Seshadri V; McArthur AG; Sogin ML; Adam RD
    J Biol Chem; 2003 Jul; 278(30):27804-10. PubMed ID: 12734189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis.
    Kellinger MW; Park GY; Chong J; Lippard SJ; Wang D
    J Am Chem Soc; 2013 Sep; 135(35):13054-61. PubMed ID: 23927577
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology.
    Hamashima K; Kimoto M; Hirao I
    Curr Opin Chem Biol; 2018 Oct; 46():108-114. PubMed ID: 30059833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of template backbone heterogeneity on RNA polymerase II transcription.
    Xu L; Wang W; Zhang L; Chong J; Huang X; Wang D
    Nucleic Acids Res; 2015 Feb; 43(4):2232-41. PubMed ID: 25662224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs.
    Kettenberger H; Eisenführ A; Brueckner F; Theis M; Famulok M; Cramer P
    Nat Struct Mol Biol; 2006 Jan; 13(1):44-8. PubMed ID: 16341226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center.
    Westover KD; Bushnell DA; Kornberg RD
    Cell; 2004 Nov; 119(4):481-9. PubMed ID: 15537538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removing quote marks from the RNA polymerase II CTD 'code'.
    Dieci G
    Biosystems; 2021 Sep; 207():104468. PubMed ID: 34216714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair.
    Ledbetter MP; Craig JM; Karadeema RJ; Noakes MT; Kim HC; Abell SJ; Huang JR; Anderson BA; Krishnamurthy R; Gundlach JH; Romesberg FE
    J Am Chem Soc; 2020 Feb; 142(5):2110-2114. PubMed ID: 31985216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II.
    Tornaletti S; Park-Snyder S; Hanawalt PC
    J Biol Chem; 2008 May; 283(19):12756-62. PubMed ID: 18292094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA.
    Wagner SD; Yakovchuk P; Gilman B; Ponicsan SL; Drullinger LF; Kugel JF; Goodrich JA
    EMBO J; 2013 Mar; 32(6):781-90. PubMed ID: 23395899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcription arrest at an abasic site in the transcribed strand of template DNA.
    Tornaletti S; Maeda LS; Hanawalt PC
    Chem Res Toxicol; 2006 Sep; 19(9):1215-20. PubMed ID: 16978026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved synthesis of the unnatural base NaM, and evaluation of its orthogonality in
    Le AV; Hartman MCT
    RSC Chem Biol; 2024 Sep; ():. PubMed ID: 39279876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetics of eukaryotic RNA polymerases I, II, and III.
    Archambault J; Friesen JD
    Microbiol Rev; 1993 Sep; 57(3):703-24. PubMed ID: 8246845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis.
    Xu L; Da L; Plouffe SW; Chong J; Kool E; Wang D
    DNA Repair (Amst); 2014 Jul; 19():71-83. PubMed ID: 24767259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Sato A; Kawai R; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2009; (53):73-4. PubMed ID: 19749266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.