These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34140883)

  • 1. A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain-Computer Interfaces.
    Ko W; Jeon E; Jeong S; Phyo J; Suk HI
    Front Hum Neurosci; 2021; 15():643386. PubMed ID: 34140883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning with large-scale data in brain-computer interfaces.
    Chun-Shu Wei ; Yuan-Pin Lin ; Yu-Te Wang ; Chin-Teng Lin ; Tzyy-Ping Jung
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4666-4669. PubMed ID: 28269314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-TIME: Test-Time Information Maximization Ensemble for Plug-and-Play BCIs.
    Li S; Wang Z; Luo H; Ding L; Wu D
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):423-432. PubMed ID: 37552589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving classification performance of motor imagery BCI through EEG data augmentation with conditional generative adversarial networks.
    Choo S; Park H; Jung JY; Flores K; Nam CS
    Neural Netw; 2024 Dec; 180():106665. PubMed ID: 39241437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer learning for motor imagery based brain-computer interfaces: A tutorial.
    Wu D; Jiang X; Peng R
    Neural Netw; 2022 Sep; 153():235-253. PubMed ID: 35753202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.
    Lotte F; Bougrain L; Cichocki A; Clerc M; Congedo M; Rakotomamonjy A; Yger F
    J Neural Eng; 2018 Jun; 15(3):031005. PubMed ID: 29488902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review.
    Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.
    Gu X; Cao Z; Jolfaei A; Xu P; Wu D; Jung TP; Lin CT
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1645-1666. PubMed ID: 33465029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of critical challenges in MI-BCI: From conventional to deep learning methods.
    Khademi Z; Ebrahimi F; Kordy HM
    J Neurosci Methods; 2023 Jan; 383():109736. PubMed ID: 36349568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data augmentation for deep-learning-based electroencephalography.
    Lashgari E; Liang D; Maoz U
    J Neurosci Methods; 2020 Dec; 346():108885. PubMed ID: 32745492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Dimensional Subject Representation-Based Transfer Learning in EEG Decoding.
    Jeng PY; Wei CS; Jung TP; Wang LC
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1915-1925. PubMed ID: 32960770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based brain-computer interfaces exploiting steady-state somatosensory-evoked potentials: a literature review.
    Petit J; Rouillard J; Cabestaing F
    J Neural Eng; 2021 Nov; 18(5):. PubMed ID: 34725311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning.
    Santamaría-Vázquez E; Martínez-Cagigal V; Pérez-Velasco S; Marcos-Martínez D; Hornero R
    Comput Methods Programs Biomed; 2022 Mar; 215():106623. PubMed ID: 35030477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface.
    Forenzo D; Zhu H; Shanahan J; Lim J; He B
    bioRxiv; 2024 Apr; ():. PubMed ID: 37905046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 18. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI.
    Jeon E; Ko W; Yoon JS; Suk HI
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; 34(2):739-749. PubMed ID: 34357871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.