These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34141071)

  • 1. Mining for Ligandable Cavities in RNA.
    Xie J; Frank AT
    ACS Med Chem Lett; 2021 Jun; 12(6):928-934. PubMed ID: 34141071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of inhibitors against the potential ligandable sites in the active cholera toxin.
    Gangopadhyay A; Datta A
    Comput Biol Chem; 2015 Apr; 55():37-48. PubMed ID: 25698576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAPosers: Machine Learning Classifiers for Ribonucleic Acid-Ligand Poses.
    Chhabra S; Xie J; Frank AT
    J Phys Chem B; 2020 Jun; 124(22):4436-4445. PubMed ID: 32427491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N; Rognan D
    J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network.
    Du H; Jiang D; Gao J; Zhang X; Jiang L; Zeng Y; Wu Z; Shen C; Xu L; Cao D; Hou T; Pan P
    Research (Wash D C); 2022; 2022():9873564. PubMed ID: 35958111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation.
    Sullenger BA; Gallardo HF; Ungers GE; Gilboa E
    J Virol; 1991 Dec; 65(12):6811-6. PubMed ID: 1942253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of human immunodeficiency virus type 1 in human T cells by a potent Rev response element decoy consisting of the 13-nucleotide minimal Rev-binding domain.
    Lee SW; Gallardo HF; Gilboa E; Smith C
    J Virol; 1994 Dec; 68(12):8254-64. PubMed ID: 7966618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription.
    Bohjanen PR; Colvin RA; Puttaraju M; Been MD; Garcia-Blanco MA
    Nucleic Acids Res; 1996 Oct; 24(19):3733-8. PubMed ID: 8871552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for ligandable sites in structured RNA throughout the Protein Data Bank.
    Hewitt WM; Calabrese DR; Schneekloth JS
    Bioorg Med Chem; 2019 Jun; 27(11):2253-2260. PubMed ID: 30982658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-based target screening as an empirical approach to prioritising targets: a case study on antibacterials.
    Canning P; Birchall K; Kettleborough CA; Merritt A; Coombs PJ
    Drug Discov Today; 2020 Sep; ():. PubMed ID: 32920060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs.
    Xia J; Jin H; Liu Z; Zhang L; Wang XS
    J Chem Inf Model; 2014 May; 54(5):1433-50. PubMed ID: 24749745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative metrics for drug-target ligandability.
    Vukovic S; Huggins DJ
    Drug Discov Today; 2018 Jun; 23(6):1258-1266. PubMed ID: 29522887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance.
    Chaput L; Martinez-Sanz J; Saettel N; Mouawad L
    J Cheminform; 2016; 8():56. PubMed ID: 27803745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional Prediction of Ribonucleic Acid Secondary Structure Using Chemical Shifts.
    Zhang K; Frank AT
    J Phys Chem B; 2020 Jan; 124(3):470-478. PubMed ID: 31829591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR.
    Filikov AV; Mohan V; Vickers TA; Griffey RH; Cook PD; Abagyan RA; James TL
    J Comput Aided Mol Des; 2000 Aug; 14(6):593-610. PubMed ID: 10921774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computer Vision Approach to Align and Compare Protein Cavities: Application to Fragment-Based Drug Design.
    Eguida M; Rognan D
    J Med Chem; 2020 Jul; 63(13):7127-7142. PubMed ID: 32496770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores.
    Barillari C; Marcou G; Rognan D
    J Chem Inf Model; 2008 Jul; 48(7):1396-410. PubMed ID: 18570371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes.
    McGovern SL; Shoichet BK
    J Med Chem; 2003 Jul; 46(14):2895-907. PubMed ID: 12825931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.