These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34141601)
1. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology. Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601 [TBL] [Abstract][Full Text] [Related]
2. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701 [TBL] [Abstract][Full Text] [Related]
3. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing. Zhang Z; Zhang T; Sun C; Karna S; Yuan L Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900 [TBL] [Abstract][Full Text] [Related]
4. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation. Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634 [TBL] [Abstract][Full Text] [Related]
5. Pyrometric-Based Melt Pool Monitoring Study of CuCr1Zr Processed Using L-PBF. Artzt K; Siggel M; Kleinert J; Riccius J; Requena G; Haubrich J Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081329 [TBL] [Abstract][Full Text] [Related]
6. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion. Lane B; Whitenton E; Moylan S Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779 [TBL] [Abstract][Full Text] [Related]
7. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Yeung H; Lane B; Fox J Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600 [TBL] [Abstract][Full Text] [Related]
8. Topographic Measurement of Individual Laser Tracks in Alloy 625 Bare Plates. Ricker RE; Heigel JC; Lane BM; Zhirnov I; Levine LE Integr Mater Manuf Innov; 2019; 8(4):. PubMed ID: 33029475 [TBL] [Abstract][Full Text] [Related]
9. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion. Vallabh CKP; Zhao X 3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791 [TBL] [Abstract][Full Text] [Related]
10. Cross-Sectional Melt Pool Geometry of Laser Scanned Tracks and Pads on Nickel Alloy 718 for the 2022 Additive Manufacturing Benchmark Challenges. Weaver JS; Deisenroth D; Mekhontsev S; Lane BM; Levine LE; Yeung H Integr Mater Manuf Innov; 2024; 13(2):. PubMed ID: 38903904 [TBL] [Abstract][Full Text] [Related]
11. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Zhang S; Lane B; Whiting J; Chou K J Manuf Process; 2019; 47():. PubMed ID: 32855624 [TBL] [Abstract][Full Text] [Related]
12. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151 [TBL] [Abstract][Full Text] [Related]
13. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography. Kim FH; Yeung H; Garboczi EJ Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468 [TBL] [Abstract][Full Text] [Related]
14. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing. Yeung H; Lane B Manuf Lett; 2020; 25():. PubMed ID: 34123726 [TBL] [Abstract][Full Text] [Related]
15. Frequency domain measurements of melt pool recoil force using modal analysis. Cullom T; Lough C; Altese N; Bristow D; Landers R; Brown B; Hartwig T; Barnard A; Blough J; Johnson K; Kinzel E Sci Rep; 2021 May; 11(1):10959. PubMed ID: 34040081 [TBL] [Abstract][Full Text] [Related]
16. Melt Pool Changes Characterization in Laser-Processed H11 Hot Work Tool Steel Using Point-by-Point Scanning Mode towards LPBF Process Optimization. Fryzowicz K; Bardo R; Dziurka R; Kawałko J; Cios G; Stwora A; Bała P Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336372 [TBL] [Abstract][Full Text] [Related]
17. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772210 [TBL] [Abstract][Full Text] [Related]
18. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V. Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176 [TBL] [Abstract][Full Text] [Related]
19. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054 [TBL] [Abstract][Full Text] [Related]
20. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy. Shen H; Yan J; Niu X Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]