These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34142001)

  • 1. Prickle morphogenesis in rose is coupled with secondary metabolite accumulation and governed by canonical MBW transcriptional complex.
    Swarnkar MK; Kumar P; Dogra V; Kumar S
    Plant Direct; 2021 Jun; 5(6):e00325. PubMed ID: 34142001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic determinism of prickles in rose.
    Zhou NN; Tang KX; Jeauffre J; Thouroude T; Arias DCL; Foucher F; Oyant LH
    Theor Appl Genet; 2020 Nov; 133(11):3017-3035. PubMed ID: 32734323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonglandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora.
    Zhang Y; Zhao M; Zhu W; Shi C; Bao M; Zhang W
    Physiol Plant; 2021 Nov; 173(3):1147-1162. PubMed ID: 34343346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological studies of rose prickles provide new insights.
    Zhou N; Simonneau F; Thouroude T; Oyant LH; Foucher F
    Hortic Res; 2021 Sep; 8(1):221. PubMed ID: 34556626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Transcriptome Analysis Reveals Key Genes and Pathways Involved in Prickle Development in Eggplant.
    Zhang L; Sun H; Xu T; Shi T; Li Z; Hou W
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of spatial pattern of prickles on stem of Rosa hybrida 'Red Queen' and mathematical model of the pattern.
    Amikura K; Ito H; Kitazawa MS
    Sci Rep; 2021 Jul; 11(1):13857. PubMed ID: 34226577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RrTTG1 promotes fruit prickle development through an MBW complex in
    Huang X; Yi P; Liu Y; Li Q; Jiang Y; Yi Y; Yan H
    Front Plant Sci; 2022; 13():939270. PubMed ID: 36105707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis provides insight into prickle development and its link to defense and secondary metabolism in Solanum viarum Dunal.
    Pandey S; Goel R; Bhardwaj A; Asif MH; Sawant SV; Misra P
    Sci Rep; 2018 Nov; 8(1):17092. PubMed ID: 30459319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined morphological and multi-omics analyses to reveal the developmental mechanism of
    Su K; Sun J; Han J; Zheng T; Sun B; Liu S
    Front Plant Sci; 2022; 13():950084. PubMed ID: 36072325
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparative ultrastructure of trichomes on various organs of Rosa roxburghii.
    Wang DJ; Lu M; Ludlow RA; Zeng JW; Ma WT; An HM
    Microsc Res Tech; 2021 Sep; 84(9):2095-2103. PubMed ID: 33934435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis reveals hormone, transcriptional and epigenetic regulation involved in prickle formation in Zanthoxylum armatum.
    Tang N; Cao Z; Wu P; Liu Y; Lou J; Hu Y; Sun X; Si S; Chen Z
    Gene; 2023 Jun; 871():147434. PubMed ID: 37068692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome mining of genes in Zanthoxylum armatum revealed ZaMYB86 as a negative regulator of prickly development.
    Liu X; He X; Liu Z; Wu P; Tang N; Chen Z; Zhang W; Rao S; Cheng S; Luo C; Xu F
    Genomics; 2022 May; 114(3):110374. PubMed ID: 35489616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rose without prickle: genomic insights linked to moisture adaptation.
    Zhong MC; Jiang XD; Yang GQ; Cui WH; Suo ZQ; Wang WJ; Sun YB; Wang D; Cheng XC; Li XM; Dong X; Tang KX; Li DZ; Hu JY
    Natl Sci Rev; 2021 Dec; 8(12):nwab092. PubMed ID: 34987840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rose Prickles and Asparagus Spines--Different Hook Structures as Attachment Devices in Climbing Plants.
    Gallenmüller F; Feus A; Fiedler K; Speck T
    PLoS One; 2015; 10(12):e0143850. PubMed ID: 26629690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GLABROUS1 from Rosa roxburghii Tratt regulates trichome formation by interacting with the GL3/EGL3 protein.
    Huang X; Yan H; Zhai L; Yi Y
    Gene; 2019 Apr; 692():60-67. PubMed ID: 30641212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine mapping of a major locus representing the lack of prickles in eggplant revealed the availability of a 0.5-kb insertion/deletion for marker-assisted selection.
    Miyatake K; Saito T; Nunome T; Yamaguchi H; Negoro S; Ohyama A; Wu J; Katayose Y; Fukuoka H
    Breed Sci; 2020 Sep; 70(4):438-448. PubMed ID: 32968346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Quantitative Trait Loci Controlling the Development of Prickles in Eggplant by Genome Re-sequencing Analysis.
    Qian Z; Zhang B; Chen H; Lu L; Duan M; Zhou J; Cui Y; Li D
    Front Plant Sci; 2021; 12():731079. PubMed ID: 34567042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prickles, latex, and tolerance in the endemic Hawaiian prickly poppy (Argemone glauca): variation between populations, across ontogeny, and in response to abiotic factors.
    Barton KE
    Oecologia; 2014 Apr; 174(4):1273-81. PubMed ID: 24288078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation, heritability and genotype by environment interaction of morphological traits in a tetraploid rose population.
    Gitonga VW; Koning-Boucoiran CF; Verlinden K; Dolstra O; Visser RG; Maliepaard C; Krens FA
    BMC Genet; 2014 Dec; 15():146. PubMed ID: 25526782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-omics analysis of the bioactive constituents biosynthesis of glandular trichome in Perilla frutescens.
    Zhou P; Yin M; Dai S; Bao K; Song C; Liu C; Wu Q
    BMC Plant Biol; 2021 Jun; 21(1):277. PubMed ID: 34144672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.