BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34142088)

  • 1. Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies.
    Astuto B; Flament I; K Namiri N; Shah R; Bharadwaj U; M Link T; D Bucknor M; Pedoia V; Majumdar S
    Radiol Artif Intell; 2021 May; 3(3):e200165. PubMed ID: 34142088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects.
    Pedoia V; Norman B; Mehany SN; Bucknor MD; Link TM; Majumdar S
    J Magn Reson Imaging; 2019 Feb; 49(2):400-410. PubMed ID: 30306701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement.
    Chaudhari AS; Grissom MJ; Fang Z; Sveinsson B; Lee JH; Gold GE; Hargreaves BA; Stevens KJ
    AJR Am J Roentgenol; 2021 Jun; 216(6):1614-1625. PubMed ID: 32755384
    [No Abstract]   [Full Text] [Related]  

  • 4. Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection.
    Liu F; Zhou Z; Samsonov A; Blankenbaker D; Larison W; Kanarek A; Lian K; Kambhampati S; Kijowski R
    Radiology; 2018 Oct; 289(1):160-169. PubMed ID: 30063195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible?
    Fayad LM; Parekh VS; de Castro Luna R; Ko CC; Tank D; Fritz J; Ahlawat S; Jacobs MA
    Invest Radiol; 2021 Jun; 56(6):357-368. PubMed ID: 33350717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-Aided Detection AI Reduces Interreader Variability in Grading Hip Abnormalities With MRI.
    Tibrewala R; Ozhinsky E; Shah R; Flament I; Crossley K; Srinivasan R; Souza R; Link TM; Pedoia V; Majumdar S
    J Magn Reson Imaging; 2020 Oct; 52(4):1163-1172. PubMed ID: 32293775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI.
    Namiri NK; Flament I; Astuto B; Shah R; Tibrewala R; Caliva F; Link TM; Pedoia V; Majumdar S
    Radiol Artif Intell; 2020 Jul; 2(4):e190207. PubMed ID: 32793889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T.
    Kijowski R; Davis KW; Woods MA; Lindstrom MJ; De Smet AA; Gold GE; Busse RF
    Radiology; 2009 Aug; 252(2):486-95. PubMed ID: 19703886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional isotropic T2-weighted fast spin-echo (VISTA) knee MRI at 3.0 T in the evaluation of the anterior cruciate ligament injury with additional views: comparison with two-dimensional fast spin-echo T2-weighted sequences.
    Park HJ; Lee SY; Park NH; Ahn JH; Chung EC; Kim SJ; Cha JG
    Acta Radiol; 2016 Nov; 57(11):1372-1379. PubMed ID: 25585852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging.
    Jung JY; Yoon YC; Kim HR; Choe BK; Wang JH; Jung JY
    Radiology; 2013 Sep; 268(3):802-13. PubMed ID: 23533289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model.
    Li J; Qian K; Liu J; Huang Z; Zhang Y; Zhao G; Wang H; Li M; Liang X; Zhou F; Yu X; Li L; Wang X; Yang X; Jiang Q
    J Orthop Translat; 2022 May; 34():91-101. PubMed ID: 35847603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning.
    Liu F; Guan B; Zhou Z; Samsonov A; Rosas H; Lian K; Sharma R; Kanarek A; Kim J; Guermazi A; Kijowski R
    Radiol Artif Intell; 2019 May; 1(3):180091. PubMed ID: 32076658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol.
    Kulseng CPS; Nainamalai V; Grøvik E; Geitung JT; Årøen A; Gjesdal KI
    BMC Musculoskelet Disord; 2023 Jan; 24(1):41. PubMed ID: 36650496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated diagnosis of anterior cruciate ligament via a weighted multi-view network.
    Li F; Zhai P; Yang C; Feng G; Yang J; Yuan Y
    Front Bioeng Biotechnol; 2023; 11():1268543. PubMed ID: 37885456
    [No Abstract]   [Full Text] [Related]  

  • 16. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation.
    Tran A; Lassalle L; Zille P; Guillin R; Pluot E; Adam C; Charachon M; Brat H; Wallaert M; d'Assignies G; Rizk B
    Eur Radiol; 2022 Dec; 32(12):8394-8403. PubMed ID: 35726103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).
    Lee YH; Hahn S; Lim D; Suh JS
    Acta Radiol; 2017 Feb; 58(2):190-196. PubMed ID: 27207633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN.
    Li YZ; Wang Y; Fang KB; Zheng HZ; Lai QQ; Xia YF; Chen JY; Dai ZS
    Eur J Med Res; 2022 Nov; 27(1):247. PubMed ID: 36372871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard.
    Zhang L; Li M; Zhou Y; Lu G; Zhou Q
    J Magn Reson Imaging; 2020 Dec; 52(6):1745-1752. PubMed ID: 32715584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.