These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34142089)

  • 1. Automatic Segmentation of Diffuse White Matter Abnormality on T2-weighted Brain MR Images Using Deep Learning in Very Preterm Infants.
    Li H; Chen M; Wang J; Illapani VSP; Parikh NA; He L
    Radiol Artif Intell; 2021 May; 3(3):e200166. PubMed ID: 34142089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective and Automated Detection of Diffuse White Matter Abnormality in Preterm Infants Using Deep Convolutional Neural Networks.
    Li H; Parikh NA; Wang J; Merhar S; Chen M; Parikh M; Holland S; He L
    Front Neurosci; 2019; 13():610. PubMed ID: 31275101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse white matter abnormality in very preterm infants at term reflects reduced brain network efficiency.
    Kline JE; Illapani VSP; Li H; He L; Yuan W; Parikh NA
    Neuroimage Clin; 2021; 31():102739. PubMed ID: 34237685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objectively Diagnosed Diffuse White Matter Abnormality at Term Is an Independent Predictor of Cognitive and Language Outcomes in Infants Born Very Preterm.
    Parikh NA; He L; Priyanka Illapani VS; Altaye M; Folger AT; Yeates KO
    J Pediatr; 2020 May; 220():56-63. PubMed ID: 32147220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel diffuse white matter abnormality biomarker at term-equivalent age enhances prediction of long-term motor development in very preterm children.
    Parikh NA; Harpster K; He L; Illapani VSP; Khalid FC; Klebanoff MA; O'Shea TM; Altaye M
    Sci Rep; 2020 Sep; 10(1):15920. PubMed ID: 32985533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perinatal Risk and Protective Factors in the Development of Diffuse White Matter Abnormality on Term-Equivalent Age Magnetic Resonance Imaging in Infants Born Very Preterm.
    Parikh NA; Sharma P; He L; Li H; Altaye M; Priyanka Illapani VS;
    J Pediatr; 2021 Jun; 233():58-65.e3. PubMed ID: 33259857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images.
    Veiga-Canuto D; Cerdà-Alberich L; Jiménez-Pastor A; Carot Sierra JM; Gomis-Maya A; Sangüesa-Nebot C; Fernández-Patón M; Martínez de Las Heras B; Taschner-Mandl S; Düster V; Pötschger U; Simon T; Neri E; Alberich-Bayarri Á; Cañete A; Hero B; Ladenstein R; Martí-Bonmatí L
    Cancers (Basel); 2023 Mar; 15(5):. PubMed ID: 36900410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks.
    Calabrese E; Rudie JD; Rauschecker AM; Villanueva-Meyer JE; Cha S
    Radiol Artif Intell; 2021 Sep; 3(5):e200276. PubMed ID: 34617027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.
    Ushinsky A; Bardis M; Glavis-Bloom J; Uchio E; Chantaduly C; Nguyentat M; Chow D; Chang PD; Houshyar R
    AJR Am J Roentgenol; 2021 Jan; 216(1):111-116. PubMed ID: 32812797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic brain segmentation in preterm infants with post-hemorrhagic hydrocephalus using 3D Bayesian U-Net.
    Largent A; De Asis-Cruz J; Kapse K; Barnett SD; Murnick J; Basu S; Andersen N; Norman S; Andescavage N; Limperopoulos C
    Hum Brain Mapp; 2022 Apr; 43(6):1895-1916. PubMed ID: 35023255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.
    Bardis M; Houshyar R; Chantaduly C; Tran-Harding K; Ushinsky A; Chahine C; Rupasinghe M; Chow D; Chang P
    Radiol Imaging Cancer; 2021 May; 3(3):e200024. PubMed ID: 33929265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images.
    Umapathy L; Perez-Carrillo GG; Keerthivasan MB; Rosado-Toro JA; Altbach MI; Winegar B; Weinkauf C; Bilgin A;
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):639-647. PubMed ID: 33574101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI.
    Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S
    J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application value of a deep learning method based on a 3D V-Net convolutional neural network in the recognition and segmentation of the auditory ossicles.
    Wang XR; Ma X; Jin LX; Gao YJ; Xue YJ; Li JL; Bai WX; Han MF; Zhou Q; Shi F; Wang J
    Front Neuroinform; 2022; 16():937891. PubMed ID: 36120083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fully Automated Deep-Learning Model for Predicting the Molecular Subtypes of Posterior Fossa Ependymomas Using T2-Weighted Images.
    Cheng D; Zhuo Z; Du J; Weng J; Zhang C; Duan Y; Sun T; Wu M; Guo M; Hua T; Jin Y; Peng B; Li Z; Zhu M; Imami M; Bettegowda C; Sair H; Bai HX; Barkhof F; Liu X; Liu Y
    Clin Cancer Res; 2024 Jan; 30(1):150-158. PubMed ID: 37916978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis.
    Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D
    Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans.
    Hirsch L; Huang Y; Luo S; Rossi Saccarelli C; Lo Gullo R; Daimiel Naranjo I; Bitencourt AGV; Onishi N; Ko ES; Leithner D; Avendano D; Eskreis-Winkler S; Hughes M; Martinez DF; Pinker K; Juluru K; El-Rowmeim AE; Elnajjar P; Morris EA; Makse HA; Parra LC; Sutton EJ
    Radiol Artif Intell; 2022 Jan; 4(1):e200231. PubMed ID: 35146431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning for the Automatic Segmentation of Extracranial Venous Malformations of the Head and Neck from MR Images Using 3D U-Net.
    Ryu JY; Hong HK; Cho HG; Lee JS; Yoo BC; Choi MH; Chung HY
    J Clin Med; 2022 Sep; 11(19):. PubMed ID: 36233460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of MR brain images of preterm infants using supervised classification.
    Moeskops P; Benders MJ; Chiţ SM; Kersbergen KJ; Groenendaal F; de Vries LS; Viergever MA; Išgum I
    Neuroimage; 2015 Sep; 118():628-41. PubMed ID: 26057591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.