These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34142421)

  • 41. Synthesis of 1,2,3-Triazine Derivatives by Deoxygenation of 1,2,3-Triazine 1-Oxides.
    Rivera G; De Angelis L; Al-Sayyed A; Biswas S; Arman H; Doyle MP
    Org Lett; 2022 Sep; 24(36):6543-6547. PubMed ID: 36054906
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substituent-oriented C-N bond formation via N-H insertion or Wolff rearrangement of 5-aryl-1H-pyrazoles and diazo compounds.
    Zuo Y; He X; Ning Y; Tang Q; Xie M; Hu W; Shang Y
    Org Biomol Chem; 2019 Dec; 17(45):9766-9771. PubMed ID: 31697287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wolff Rearrangement of Oxidatively Generated α-Oxo Gold Carbenes: An Effective Approach to Silylketenes.
    Zheng Y; Zhang J; Cheng X; Xu X; Zhang L
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5241-5245. PubMed ID: 30785666
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromium/Photoredox Dual Catalyzed Synthesis of α-Benzylic Alcohols, Isochromanones, 1,2-Oxy Alcohols and 1,2-Thio Alcohols.
    Dutta S; Erchinger JE; Schäfers F; Das A; Daniliuc CG; Glorius F
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202212136. PubMed ID: 36166323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bis(arylmethyl)-substituted unsymmetrical phosphites for the synthesis of lipidated peptides via Staudinger-phosphite reactions.
    Nischan N; Kasper MA; Mathew T; Hackenberger CP
    Org Biomol Chem; 2016 Aug; 14(31):7500-8. PubMed ID: 27424660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zinc-mediated C-C bond sigmatropic rearrangement: a new and efficient methodology for the synthesis of beta-diketones.
    Li L; Cai P; Xu D; Guo Q; Xue S
    J Org Chem; 2007 Oct; 72(21):8131-4. PubMed ID: 17887703
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Catalytic asymmetric Staudinger reactions to form beta-lactams: an unanticipated dependence of diastereoselectivity on the choice of the nitrogen substituent.
    Lee EC; Hodous BL; Bergin E; Shih C; Fu GC
    J Am Chem Soc; 2005 Aug; 127(33):11586-7. PubMed ID: 16104719
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymmetric wolff rearrangement reactions with alpha-alkylated-alpha-diazoketones: stereoselective synthesis of alpha-substituted-beta-amino acid derivatives.
    Yang H; Foster K; Stephenson CR; Brown W; Roberts E
    Org Lett; 2000 Jul; 2(14):2177-9. PubMed ID: 10891260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radical Carboxylative Cyclizations and Carboxylations with CO
    Ye JH; Ju T; Huang H; Liao LL; Yu DG
    Acc Chem Res; 2021 May; 54(10):2518-2531. PubMed ID: 33956436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemoselective Staudinger-phosphite reaction of symmetrical glycosyl-phosphites with azido-peptides and polygycerols.
    Böhrsch V; Mathew T; Zieringer M; Vallée MR; Artner LM; Dernedde J; Haag R; Hackenberger CP
    Org Biomol Chem; 2012 Aug; 10(30):6211-6. PubMed ID: 22688846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stereoselective control in the Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents: experimental investigation and theoretical rationalization.
    Qi H; Li X; Xu J
    Org Biomol Chem; 2011 Apr; 9(8):2702-14. PubMed ID: 21359284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stereocontrolled synthesis of anticancer beta-lactams via the Staudinger reaction.
    Banik BK; Banik I; Becker FF
    Bioorg Med Chem; 2005 Jun; 13(11):3611-22. PubMed ID: 15862989
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of Chiral Esters via Asymmetric Wolff Rearrangement Reaction.
    Meng J; Ding WW; Han ZY
    Org Lett; 2019 Dec; 21(24):9801-9805. PubMed ID: 31589457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photoredox-Catalyzed Reductive Coupling of Aldehydes, Ketones, and Imines with Visible Light.
    Nakajima M; Fava E; Loescher S; Jiang Z; Rueping M
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8828-32. PubMed ID: 26082970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brønsted base-catalyzed three-component coupling reaction of α-ketoesters, imines, and diethyl phosphite utilizing [1,2]-phospha-Brook rearrangement.
    Kondoh A; Terada M
    Org Biomol Chem; 2016 May; 14(20):4704-11. PubMed ID: 27138876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visible-Light-Promoted Cascade Radical Cyclization: Synthesis of 1,4-Diketones Containing Chroman-4-One Skeletons.
    He XK; Cai BG; Yang QQ; Wang L; Xuan J
    Chem Asian J; 2019 Oct; 14(19):3269-3273. PubMed ID: 31464012
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of beta-lactams from a N-rhenaimine: effect of the transition metal on the energetic profile of the Staudinger reaction.
    Hevia E; Pérez J; Riera V; Miguel D; Campomanes P; Menéndez MI; Sordo TL; García-Granda S
    J Am Chem Soc; 2003 Apr; 125(13):3706-7. PubMed ID: 12656594
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Ma S; Guo Y; Liu L; Shi L; Lei X; Duan X; Jiao P
    J Org Chem; 2023 Apr; 88(7):4743-4756. PubMed ID: 36971723
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoredox Approach to N-Acyl-N'-aryl-N,N'-aminals Using Enamides and Their Conversion to γ-Lactams.
    Koleoso OK; Elsegood MRJ; Teat SJ; Kimber MC
    Org Lett; 2018 Feb; 20(4):1003-1006. PubMed ID: 29373031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.