These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34142442)

  • 41. Encoding Reversible Hierarchical Structures with Supramolecular Peptide-DNA Materials.
    Daly ML; Gao Y; Freeman R
    Bioconjug Chem; 2019 Jul; 30(7):1864-1869. PubMed ID: 31181892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amphiphilic Peptide Self-Assembly: Expansion to Hybrid Materials.
    Mikhalevich V; Craciun I; Kyropoulou M; Palivan CG; Meier W
    Biomacromolecules; 2017 Nov; 18(11):3471-3480. PubMed ID: 28776980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ(4)-hybrid peptide helices.
    Jadhav SV; Misra R; Gopi HN
    Chemistry; 2014 Dec; 20(50):16523-8. PubMed ID: 25346477
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Co-Assembly of Two Building Blocks Harnesses Both their Attributes into a Functional Supramolecular Hydrogel.
    Chakraborty P; Aviv M; Netti F; Cohen-Gerassi D; Adler-Abramovich L
    Macromol Biosci; 2022 May; 22(5):e2100439. PubMed ID: 35133711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulus-Responsive Amino Acids Behind In Situ Assembled Bioactive Peptide Materials.
    Song Y; Zhang Z; Cao Y; Yu Z
    Chembiochem; 2023 Feb; 24(3):e202200497. PubMed ID: 36278304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Assembly of Tyrosine into Controlled Supramolecular Nanostructures.
    Ménard-Moyon C; Venkatesh V; Krishna KV; Bonachera F; Verma S; Bianco A
    Chemistry; 2015 Aug; 21(33):11681-6. PubMed ID: 26179867
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Harnessing supramolecular peptide nanotechnology in biomedical applications.
    Chan KH; Lee WH; Zhuo S; Ni M
    Int J Nanomedicine; 2017; 12():1171-1182. PubMed ID: 28223805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-assembly and application of diphenylalanine-based nanostructures.
    Yan X; Zhu P; Li J
    Chem Soc Rev; 2010 Jun; 39(6):1877-90. PubMed ID: 20502791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoscale Assembly of Functional Peptides with Divergent Programming Elements.
    Garcia AM; Melchionna M; Bellotto O; Kralj S; Semeraro S; Parisi E; Iglesias D; D'Andrea P; De Zorzi R; Vargiu AV; Marchesan S
    ACS Nano; 2021 Feb; 15(2):3015-3025. PubMed ID: 33576622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tailor-Made Functional Peptide Self-Assembling Nanostructures.
    Amit M; Yuran S; Gazit E; Reches M; Ashkenasy N
    Adv Mater; 2018 Oct; 30(41):e1707083. PubMed ID: 29989255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peptide supramolecular materials for therapeutics.
    Sato K; Hendricks MP; Palmer LC; Stupp SI
    Chem Soc Rev; 2018 Oct; 47(20):7539-7551. PubMed ID: 30187042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures.
    Cui H; Cheetham AG; Pashuck ET; Stupp SI
    J Am Chem Soc; 2014 Sep; 136(35):12461-8. PubMed ID: 25144245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Entropically-Driven Co-assembly of l-Histidine and l-Phenylalanine to Form Supramolecular Materials.
    Tiwari OS; Aizen R; Meli M; Colombo G; Shimon LJW; Tal N; Gazit E
    ACS Nano; 2023 Feb; 17(4):3506-3517. PubMed ID: 36745579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. De novo designed peptides for biological applications.
    Boyle AL; Woolfson DN
    Chem Soc Rev; 2011 Aug; 40(8):4295-306. PubMed ID: 21373694
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Guiding principles for peptide nanotechnology through directed discovery.
    Lampel A; Ulijn RV; Tuttle T
    Chem Soc Rev; 2018 May; 47(10):3737-3758. PubMed ID: 29748676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The leucine zipper as a building block for self-assembled protein fibers.
    Ryadnov MG; Papapostolou D; Woolfson DN
    Methods Mol Biol; 2008; 474():35-51. PubMed ID: 19031059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.