These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34142442)

  • 61. Bi-functional peptide-based 3D hydrogel-scaffolds.
    Diaferia C; Netti F; Ghosh M; Sibillano T; Giannini C; Morelli G; Adler-Abramovich L; Accardo A
    Soft Matter; 2020 Aug; 16(30):7006-7017. PubMed ID: 32638818
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation.
    Collie GW; Pulka-Ziach K; Lombardo CM; Fremaux J; Rosu F; Decossas M; Mauran L; Lambert O; Gabelica V; Mackereth CD; Guichard G
    Nat Chem; 2015 Nov; 7(11):871-8. PubMed ID: 26492006
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Designer peptides as versatile building blocks for functional materials.
    Dhawan S; Singh H; Dutta S; Haridas V
    Bioorg Med Chem Lett; 2022 Jul; 68():128733. PubMed ID: 35421579
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein.
    Kye M; Lim YB
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12003-7. PubMed ID: 27553897
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Peptidic foldamers: ramping up diversity.
    Martinek TA; Fülöp F
    Chem Soc Rev; 2012 Jan; 41(2):687-702. PubMed ID: 21769415
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials.
    Mendes AC; Baran ET; Reis RL; Azevedo HS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(6):582-612. PubMed ID: 23929805
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions.
    Reches M; Gazit E
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2239-45. PubMed ID: 17663236
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Alpha-aminoxy acids: new possibilities from foldamers to anion receptors and channels.
    Li X; Wu YD; Yang D
    Acc Chem Res; 2008 Oct; 41(10):1428-38. PubMed ID: 18785763
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application.
    Qiu F; Chen Y; Tang C; Zhao X
    Int J Nanomedicine; 2018; 13():5003-5022. PubMed ID: 30214203
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide.
    Sun Y; Ding F
    Nanoscale; 2020 Mar; 12(11):6307-6317. PubMed ID: 32108838
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition.
    Chan KH; Xue B; Robinson RC; Hauser CAE
    Sci Rep; 2017 Oct; 7(1):12897. PubMed ID: 29018249
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience.
    Cavalli S; Albericio F; Kros A
    Chem Soc Rev; 2010 Jan; 39(1):241-63. PubMed ID: 20023851
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomedical Applications of Self-Assembling Peptides.
    Rad-Malekshahi M; Lempsink L; Amidi M; Hennink WE; Mastrobattista E
    Bioconjug Chem; 2016 Jan; 27(1):3-18. PubMed ID: 26473310
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application.
    Tarvirdipour S; Huang X; Mihali V; Schoenenberger CA; Palivan CG
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751865
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Foldamer Tertiary Structure through Sequence-Guided Protein Backbone Alteration.
    George KL; Horne WS
    Acc Chem Res; 2018 May; 51(5):1220-1228. PubMed ID: 29672021
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Folding and Assembly of Short α, β, γ-Hybrid Peptides: Minor Variations in Sequence and Drastic Differences in Higher-Level Structures.
    Zhang Y; Zhong Y; Connor AL; Miller DP; Cao R; Shen J; Song B; Baker ES; Tang Q; Pulavarti SVSRK; Liu R; Wang Q; Lu ZL; Szyperski T; Zeng H; Li X; Smith RD; Zurek E; Zhu J; Gong B
    J Am Chem Soc; 2019 Sep; 141(36):14239-14248. PubMed ID: 31381306
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Interlocked DNA topologies for nanotechnology.
    Valero J; Lohmann F; Famulok M
    Curr Opin Biotechnol; 2017 Dec; 48():159-167. PubMed ID: 28505598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.