These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 34142538)
1. [Molecular mechanism of chromogenic substrate hydrolysis in the active site of human carboxylesterase-1]. Kulakova AM; Khrenova MG; Nemukhin AV Biomed Khim; 2021 May; 67(3):300-305. PubMed ID: 34142538 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Hydrolysis Mechanism of Cocaine by Human Carboxylesterase 1: An Orthoester Intermediate Slows Down the Reaction. Yan M; Zhang Z; Liu Z; Zhang C; Zhang J; Fan S; Yang Z Molecules; 2019 Nov; 24(22):. PubMed ID: 31717501 [TBL] [Abstract][Full Text] [Related]
3. Effect of alcohols on the hydrolysis catalyzed by human pancreatic carboxylic-ester hydrolase. Lombardo D; Guy O Biochim Biophys Acta; 1981 Feb; 657(2):425-37. PubMed ID: 7213755 [TBL] [Abstract][Full Text] [Related]
4. Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Takai S; Matsuda A; Usami Y; Adachi T; Sugiyama T; Katagiri Y; Tatematsu M; Hirano K Biol Pharm Bull; 1997 Aug; 20(8):869-73. PubMed ID: 9300133 [TBL] [Abstract][Full Text] [Related]
5. Catalytic Reaction Mechanism for Drug Metabolism in Human Carboxylesterase-1: Cocaine Hydrolysis Pathway. Yao J; Chen X; Zheng F; Zhan CG Mol Pharm; 2018 Sep; 15(9):3871-3880. PubMed ID: 30095924 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of human carboxylesterases by magnolol: Kinetic analyses and mechanism. Song YQ; Weng ZM; Dou TY; Finel M; Wang YQ; Ding LL; Jin Q; Wang DD; Fang SQ; Cao YF; Hou J; Ge GB Chem Biol Interact; 2019 Aug; 308():339-349. PubMed ID: 31170387 [TBL] [Abstract][Full Text] [Related]
7. Human carboxylesterases in term placentae: enzymatic characterization, molecular cloning and evidence for the existence of multiple forms. Yan B; Matoney L; Yang D Placenta; 1999 Sep; 20(7):599-607. PubMed ID: 10452915 [TBL] [Abstract][Full Text] [Related]
8. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. Pindel EV; Kedishvili NY; Abraham TL; Brzezinski MR; Zhang J; Dean RA; Bosron WF J Biol Chem; 1997 Jun; 272(23):14769-75. PubMed ID: 9169443 [TBL] [Abstract][Full Text] [Related]
9. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Imai T; Taketani M; Shii M; Hosokawa M; Chiba K Drug Metab Dispos; 2006 Oct; 34(10):1734-41. PubMed ID: 16837570 [TBL] [Abstract][Full Text] [Related]
10. Contribution of human esterases to the metabolism of selected drugs of abuse. Meyer MR; Schütz A; Maurer HH Toxicol Lett; 2015 Jan; 232(1):159-66. PubMed ID: 25445008 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866 [TBL] [Abstract][Full Text] [Related]
12. Reaction pathway and free energy profiles for butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine. Chen X; Fang L; Liu J; Zhan CG Biochemistry; 2012 Feb; 51(6):1297-305. PubMed ID: 22304234 [TBL] [Abstract][Full Text] [Related]
13. hCES1 and hCES2 mediated activation of epalrestat-antioxidant mutual prodrugs: Unwinding the hydrolytic mechanism using in silico approaches. Choudhary S; Silakari O J Mol Graph Model; 2019 Sep; 91():148-163. PubMed ID: 31252365 [TBL] [Abstract][Full Text] [Related]
14. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Wheelock CE; Phillips BM; Anderson BS; Miller JL; Miller MJ; Hammock BD Rev Environ Contam Toxicol; 2008; 195():117-78. PubMed ID: 18418956 [TBL] [Abstract][Full Text] [Related]
15. New chromogenic and fluorogenic substrates for the determination of butyrylcholinesterase and arylesterase activities. Nozawa M; Tanizawa K; Kanaoka Y J Pharmacobiodyn; 1980 Jul; 3(7):321-7. PubMed ID: 7205543 [TBL] [Abstract][Full Text] [Related]
16. Carboxylesterase isoenzyme specific deacylation of diacetoxyscirpenol (anguidine). Wu SE; Marletta MA Chem Res Toxicol; 1988; 1(1):69-73. PubMed ID: 2979714 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Crow JA; Borazjani A; Potter PM; Ross MK Toxicol Appl Pharmacol; 2007 May; 221(1):1-12. PubMed ID: 17442360 [TBL] [Abstract][Full Text] [Related]
18. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases. Chahinian H; Ali YB; Abousalham A; Petry S; Mandrich L; Manco G; Canaan S; Sarda L Biochim Biophys Acta; 2005 Dec; 1738(1-3):29-36. PubMed ID: 16325466 [TBL] [Abstract][Full Text] [Related]
19. Human liver carboxylesterase. Properties and comparison with human serum carboxylesterase. Tsujita T; Okuda H J Biochem; 1983 Sep; 94(3):793-7. PubMed ID: 6417119 [TBL] [Abstract][Full Text] [Related]
20. Difference in substrate specificity of carboxylesterase and arylacetamide deacetylase between dogs and humans. Yoshida T; Fukami T; Kurokawa T; Gotoh S; Oda A; Nakajima M Eur J Pharm Sci; 2018 Jan; 111():167-176. PubMed ID: 28966098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]