These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 34142614)

  • 21. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Big Data and machine learning in radiation oncology: State of the art and future prospects.
    Bibault JE; Giraud P; Burgun A
    Cancer Lett; 2016 Nov; 382(1):110-117. PubMed ID: 27241666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in Auto-Segmentation.
    Cardenas CE; Yang J; Anderson BM; Court LE; Brock KB
    Semin Radiat Oncol; 2019 Jul; 29(3):185-197. PubMed ID: 31027636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The emerging role of deep learning in cytology.
    Dey P
    Cytopathology; 2021 Mar; 32(2):154-160. PubMed ID: 33222315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning for automated segmentation in radiotherapy: a narrative review.
    Bibault JE; Giraud P
    Br J Radiol; 2024 Jan; 97(1153):13-20. PubMed ID: 38263838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revolutionizing radiation therapy: the role of AI in clinical practice.
    Kawamura M; Kamomae T; Yanagawa M; Kamagata K; Fujita S; Ueda D; Matsui Y; Fushimi Y; Fujioka T; Nozaki T; Yamada A; Hirata K; Ito R; Fujima N; Tatsugami F; Nakaura T; Tsuboyama T; Naganawa S
    J Radiat Res; 2024 Jan; 65(1):1-9. PubMed ID: 37996085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization.
    Papadimitroulas P; Brocki L; Christopher Chung N; Marchadour W; Vermet F; Gaubert L; Eleftheriadis V; Plachouris D; Visvikis D; Kagadis GC; Hatt M
    Phys Med; 2021 Mar; 83():108-121. PubMed ID: 33765601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiomics for liver tumours.
    Dreher C; Linde P; Boda-Heggemann J; Baessler B
    Strahlenther Onkol; 2020 Oct; 196(10):888-899. PubMed ID: 32296901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Convolutional Neural Network Framework with Deep Learning for Nuclear Medicine.
    Manimegalai P; Suresh Kumar R; Valsalan P; Dhanagopal R; Vasanth Raj PT; Christhudass J
    Scanning; 2022; 2022():9640177. PubMed ID: 35924105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Learning in Radiation Oncology Treatment Planning for Prostate Cancer: A Systematic Review.
    Almeida G; Tavares JMRS
    J Med Syst; 2020 Aug; 44(10):179. PubMed ID: 32862251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning in medical imaging and radiation therapy.
    Sahiner B; Pezeshk A; Hadjiiski LM; Wang X; Drukker K; Cha KH; Summers RM; Giger ML
    Med Phys; 2019 Jan; 46(1):e1-e36. PubMed ID: 30367497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].
    Yi T; Lin C; En-Ci J; Ji-Zhong Y
    Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5438-5442. PubMed ID: 33350203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of deep learning in radiation therapy for cancer.
    Wen X; Zhao C; Zhao B; Yuan M; Chang J; Liu W; Meng J; Shi L; Yang S; Zeng J; Yang Y
    Cancer Radiother; 2024 Apr; 28(2):208-217. PubMed ID: 38519291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Role of PET-CT in Radiation Therapy Planning.
    Church J
    Radiol Technol; 2018 Mar; 89(4):399-401. PubMed ID: 29691351
    [No Abstract]   [Full Text] [Related]  

  • 38. [Basis and perspectives of artificial intelligence in radiation therapy].
    Burgun A
    Cancer Radiother; 2019 Dec; 23(8):913-916. PubMed ID: 31645301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy.
    Zou W; Dong L; Kevin Teo BK
    Semin Radiat Oncol; 2018 Jun; 28(3):238-247. PubMed ID: 29933883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomics: A primer for the radiation oncologist.
    Bibault JE; Xing L; Giraud P; El Ayachy R; Giraud N; Decazes P; Burgun A; Giraud P
    Cancer Radiother; 2020 Aug; 24(5):403-410. PubMed ID: 32265157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.