BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 34142711)

  • 1. Axial elongation of caudalized human organoids mimics aspects of neural tube development.
    Libby ARG; Joy DA; Elder NH; Bulger EA; Krakora MZ; Gaylord EA; Mendoza-Camacho F; Butts JC; McDevitt TC
    Development; 2021 Jun; 148(12):. PubMed ID: 34142711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves.
    Yaman YI; Ramanathan S
    Cell; 2023 Feb; 186(3):513-527.e19. PubMed ID: 36657441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities.
    Whye D; Wood D; Kim KH; Chen C; Makhortova N; Sahin M; Buttermore ED
    Curr Protoc; 2022 Oct; 2(10):e568. PubMed ID: 36264199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation.
    Anand GM; Megale HC; Murphy SH; Weis T; Lin Z; He Y; Wang X; Liu J; Ramanathan S
    Cell; 2023 Feb; 186(3):497-512.e23. PubMed ID: 36657443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromesodermal specification during head-to-tail body axis formation.
    Martins-Costa C; Wilson V; Binagui-Casas A
    Curr Top Dev Biol; 2024; 159():232-271. PubMed ID: 38729677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A patterned human neural tube model using microfluidic gradients.
    Xue X; Kim YS; Ponce-Arias AI; O'Laughlin R; Yan RZ; Kobayashi N; Tshuva RY; Tsai YH; Sun S; Zheng Y; Liu Y; Wong FCK; Surani A; Spence JR; Song H; Ming GL; Reiner O; Fu J
    Nature; 2024 Apr; 628(8007):391-399. PubMed ID: 38408487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development.
    Kahane N; Kalcheim C
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organizing in vitro mouse neural tube organoids mimic embryonic development.
    Park J; Hsiung HA; Khven I; La Manno G; Lutolf MP
    Development; 2022 Oct; 149(20):. PubMed ID: 36268933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt-Notch Signaling Interactions During Neural and Astroglial Patterning of Human Stem Cells.
    Bejoy J; Bijonowski B; Marzano M; Jeske R; Ma T; Li Y
    Tissue Eng Part A; 2020 Apr; 26(7-8):419-431. PubMed ID: 31686622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells.
    Takemoto T; Uchikawa M; Yoshida M; Bell DM; Lovell-Badge R; Papaioannou VE; Kondoh H
    Nature; 2011 Feb; 470(7334):394-8. PubMed ID: 21331042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation.
    Zhao T; Gan Q; Stokes A; Lassiter RN; Wang Y; Chan J; Han JX; Pleasure DE; Epstein JA; Zhou CJ
    Development; 2014 Jan; 141(1):148-57. PubMed ID: 24284205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry Breaking of Human Pluripotent Stem Cells (hPSCs) in Micropattern Generates a Polarized Spinal Cord-Like Organoid (pSCO) with Dorsoventral Organization.
    Seo K; Cho S; Shin H; Shin A; Lee JH; Kim JH; Lee B; Jang H; Kim Y; Cho HM; Park Y; Kim HY; Lee T; Park WY; Kim YJ; Yang E; Geum D; Kim H; Cho IJ; Lee S; Ryu JR; Sun W
    Adv Sci (Weinh); 2023 Jul; 10(20):e2301787. PubMed ID: 37170679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From signalling to form: the coordination of neural tube patterning.
    Frith TJR; Briscoe J; Boezio GLM
    Curr Top Dev Biol; 2024; 159():168-231. PubMed ID: 38729676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient.
    Rifes P; Isaksson M; Rathore GS; Aldrin-Kirk P; Møller OK; Barzaghi G; Lee J; Egerod KL; Rausch DM; Parmar M; Pers TH; Laurell T; Kirkeby A
    Nat Biotechnol; 2020 Nov; 38(11):1265-1273. PubMed ID: 32451506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP4 patterns Smad activity and generates stereotyped cell fate organization in spinal organoids.
    Duval N; Vaslin C; Barata TC; Frarma Y; Contremoulins V; Baudin X; Nedelec S; Ribes VC
    Development; 2019 Jul; 146(14):. PubMed ID: 31239243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anteroposterior Wnt-RA Gradient Defines Adhesion and Migration Properties of Neural Progenitors in Developing Spinal Cord.
    Shaker MR; Lee JH; Park SH; Kim JY; Son GH; Son JW; Park BH; Rhyu IJ; Kim H; Sun W
    Stem Cell Reports; 2020 Oct; 15(4):898-911. PubMed ID: 32976767
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Tsai YH; Nattiv R; Dedhia PH; Nagy MS; Chin AM; Thomson M; Klein OD; Spence JR
    Development; 2017 Mar; 144(6):1045-1055. PubMed ID: 27927684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastruloids generated without exogenous Wnt activation develop anterior neural tissues.
    Girgin MU; Broguiere N; Mattolini L; Lutolf MP
    Stem Cell Reports; 2021 May; 16(5):1143-1155. PubMed ID: 33891872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives.
    Wind M; Gogolou A; Manipur I; Granata I; Butler L; Andrews PW; Barbaric I; Ning K; Guarracino MR; Placzek M; Tsakiridis A
    Development; 2021 Mar; 148(6):. PubMed ID: 33658223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Wnt signaling in the development of the epiblast and axial progenitors.
    Schnirman RE; Kuo SJ; Kelly RC; Yamaguchi TP
    Curr Top Dev Biol; 2023; 153():145-180. PubMed ID: 36967193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.