These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34142751)

  • 1. The new insight into extracellular NAD
    Jablonska P; Kutryb-Zajac B; Mierzejewska P; Jasztal A; Bocian B; Lango R; Rogowski J; Chlopicki S; Smolenski RT; Slominska EM
    J Cell Mol Med; 2021 Jul; 25(13):5884-5898. PubMed ID: 34142751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide ecto-enzyme metabolic pattern and spatial distribution in calcific aortic valve disease; its relation to pathological changes and clinical presentation.
    Kutryb-Zajac B; Jablonska P; Serocki M; Bulinska A; Mierzejewska P; Friebe D; Alter C; Jasztal A; Lango R; Rogowski J; Bartoszewski R; Slominska EM; Chlopicki S; Schrader J; Yacoub MH; Smolenski RT
    Clin Res Cardiol; 2020 Feb; 109(2):137-160. PubMed ID: 31144065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
    Mateuszuk Ł; Campagna R; Kutryb-Zając B; Kuś K; Słominska EM; Smolenski RT; Chlopicki S
    Biochem Pharmacol; 2020 Aug; 178():114019. PubMed ID: 32389638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statin treatment of patients with calcific aortic valve disease modulates extracellular adenosine metabolism on the cell surface of the aortic valve.
    Kutryb-Zajac B; Jablonska P; Hebanowska A; Lango R; Rogowski J; Slominska EM; Smolenski RT
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(10-12):1389-1399. PubMed ID: 32126886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.
    Grozio A; Sociali G; Sturla L; Caffa I; Soncini D; Salis A; Raffaelli N; De Flora A; Nencioni A; Bruzzone S
    J Biol Chem; 2013 Sep; 288(36):25938-25949. PubMed ID: 23880765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD39 and CD73 in the aortic valve-biochemical and immunohistochemical analysis in valve cell populations and its changes in valve mineralization.
    Kaniewska-Bednarczuk E; Kutryb-Zajac B; Sarathchandra P; Pelikant-Malecka I; Sielicka A; Piotrowska I; Slominska EM; Chester AH; Yacoub MH; Smolenski RT
    Cardiovasc Pathol; 2018; 36():53-63. PubMed ID: 30056298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in Extracellular NAD
    Jablonska P; Mierzejewska P; Tomczyk M; Koszalka P; Franczak M; Kawecka A; Kutryb-Zajac B; Braczko A; Smolenski RT; Slominska EM
    Biology (Basel); 2022 Apr; 11(5):. PubMed ID: 35625403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine derived from ecto-nucleotidases in calcific aortic valve disease promotes mineralization through A2a adenosine receptor.
    Mahmut A; Boulanger MC; Bouchareb R; Hadji F; Mathieu P
    Cardiovasc Res; 2015 Apr; 106(1):109-20. PubMed ID: 25644539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites.
    Deterre P; Gelman L; Gary-Gouy H; Arrieumerlou C; Berthelier V; Tixier JM; Ktorza S; Goding J; Schmitt C; Bismuth G
    J Immunol; 1996 Aug; 157(4):1381-8. PubMed ID: 8759717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular NAD
    Wilk A; Hayat F; Cunningham R; Li J; Garavaglia S; Zamani L; Ferraris DM; Sykora P; Andrews J; Clark J; Davis A; Chaloin L; Rizzi M; Migaud M; Sobol RW
    Sci Rep; 2020 Jan; 10(1):651. PubMed ID: 31959836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular metabolism of the enteric inhibitory neurotransmitter β-nicotinamide adenine dinucleotide (β-NAD) in the murine colon.
    Durnin L; Kurahashi M; Sanders KM; Mutafova-Yambolieva VN
    J Physiol; 2020 Oct; 598(20):4509-4521. PubMed ID: 32735345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide adenine dinucleotide glycohydrolase, nicotinamide mononucleotide glycohydrolase, and nicotinamide adenine dinucleotide pyrophosphatase activities.
    Foster JW
    J Bacteriol; 1981 Feb; 145(2):1002-9. PubMed ID: 6109709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of CD73 in mice leads to aortic valve dysfunction.
    Zukowska P; Kutryb-Zajac B; Jasztal A; Toczek M; Zabielska M; Borkowski T; Khalpey Z; Smolenski RT; Slominska EM
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1464-1472. PubMed ID: 28192180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD
    Chini CCS; Peclat TR; Warner GM; Kashyap S; Espindola-Netto JM; de Oliveira GC; Gomez LS; Hogan KA; Tarragó MG; Puranik AS; Agorrody G; Thompson KL; Dang K; Clarke S; Childs BG; Kanamori KS; Witte MA; Vidal P; Kirkland AL; De Cecco M; Chellappa K; McReynolds MR; Jankowski C; Tchkonia T; Kirkland JL; Sedivy JM; van Deursen JM; Baker DJ; van Schooten W; Rabinowitz JD; Baur JA; Chini EN
    Nat Metab; 2020 Nov; 2(11):1284-1304. PubMed ID: 33199925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of nicotinamide mononucleotide in beef liver.
    Imai T; Anderson BM
    Arch Biochem Biophys; 1987 Apr; 254(1):241-52. PubMed ID: 3034159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical and functional analysis of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and ecto-5'-nucleotidase (CD73) in pig aortic valves.
    Kaniewska E; Sielicka A; Sarathchandra P; Pelikant-Małecka I; Olkowicz M; Słomińska EM; Chester AH; Yacoub MH; Smoleński RT
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):305-12. PubMed ID: 24940684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous accurate quantification of HO-1, CD39, and CD73 in human calcified aortic valves using multiple enzyme digestion - filter aided sample pretreatment (MED-FASP) method and targeted proteomics.
    Olkowicz M; Jablonska P; Rogowski J; Smolenski RT
    Talanta; 2018 May; 182():492-499. PubMed ID: 29501184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease-relevant murine model.
    Long AN; Owens K; Schlappal AE; Kristian T; Fishman PS; Schuh RA
    BMC Neurol; 2015 Mar; 15():19. PubMed ID: 25884176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization.
    Mahmut A; Boulanger MC; El Husseini D; Fournier D; Bouchareb R; Després JP; Pibarot P; Bossé Y; Mathieu P
    J Am Coll Cardiol; 2014 Feb; 63(5):460-9. PubMed ID: 24161325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.