These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34142815)
1. Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher. Choi H; Eom S; Kim HU; Bae Y; Jung HS; Kang S Biomacromolecules; 2021 Jul; 22(7):3028-3039. PubMed ID: 34142815 [TBL] [Abstract][Full Text] [Related]
2. Developing Porous Protein Cage Nanoparticles as Cargo-Loadable and Ligand-Displayable Modular Delivery Nanoplatforms. Eom S; Jun H; Kim E; Min D; Kim H; Kang S ACS Appl Mater Interfaces; 2024 Oct; 16(43):58464-58476. PubMed ID: 39418329 [TBL] [Abstract][Full Text] [Related]
3. Engineering Tunable Dual Functional Protein Cage Nanoparticles Using Bacterial Superglue. Bae Y; Kim GJ; Kim H; Park SG; Jung HS; Kang S Biomacromolecules; 2018 Jul; 19(7):2896-2904. PubMed ID: 29847113 [TBL] [Abstract][Full Text] [Related]
4. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue. Kim H; Choi H; Bae Y; Kang S Biotechnol Bioeng; 2019 Nov; 116(11):2843-2851. PubMed ID: 31329283 [TBL] [Abstract][Full Text] [Related]
5. Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Moon H; Lee J; Min J; Kang S Biomacromolecules; 2014 Oct; 15(10):3794-801. PubMed ID: 25180761 [TBL] [Abstract][Full Text] [Related]
6. Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T Kim H; Jin S; Choi H; Kang M; Park SG; Jun H; Cho H; Kang S J Control Release; 2021 Jul; 335():269-280. PubMed ID: 34044091 [TBL] [Abstract][Full Text] [Related]
7. Conditional Toxin Splicing Using a Split Intein System. Alford SC; O'Sullivan C; Howard PL Methods Mol Biol; 2017; 1495():197-216. PubMed ID: 27714618 [TBL] [Abstract][Full Text] [Related]
8. Site-Specific Fluorescent Labeling of Antibodies and Diabodies Using SpyTag/SpyCatcher System for In Vivo Optical Imaging. Alam MK; El-Sayed A; Barreto K; Bernhard W; Fonge H; Geyer CR Mol Imaging Biol; 2019 Feb; 21(1):54-66. PubMed ID: 29948640 [TBL] [Abstract][Full Text] [Related]
9. Protein Cages Engineered for Interaction-Driven Selective Encapsulation of Biomolecules. Lee Y; Kim M; Kang JY; Jung Y ACS Appl Mater Interfaces; 2022 Aug; 14(31):35357-35365. PubMed ID: 35916207 [TBL] [Abstract][Full Text] [Related]
10. Effective Delivery of Antigen-Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection. Choi B; Moon H; Hong SJ; Shin C; Do Y; Ryu S; Kang S ACS Nano; 2016 Aug; 10(8):7339-50. PubMed ID: 27390910 [TBL] [Abstract][Full Text] [Related]
11. Development of HER2-Targeting-Ligand-Modified Albumin Nanoparticles Based on the SpyTag/SpyCatcher System for Photothermal Therapy. Lee C; Kang S Biomacromolecules; 2021 Jun; 22(6):2649-2658. PubMed ID: 34060808 [TBL] [Abstract][Full Text] [Related]
12. A Versatile Magnetic Nanoplatform for Plug-and-Play Functionalization: Genetically Programmable Cargo Loading to Bacterial Magnetosomes by SpyCatcher "Click Biology". Mickoleit F; Beierl JJ; Markert S; Klein MA; Stäbler SY; Maier DS; Schüler D ACS Nano; 2024 Oct; 18(41):27974-27987. PubMed ID: 39365667 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Modular Protein Display Efficiency in SpyTag-Implemented Norovirus-like Particles. Boonyakida J; Khoris IM; Nasrin F; Park EY Biomacromolecules; 2023 Jan; 24(1):308-318. PubMed ID: 36475654 [TBL] [Abstract][Full Text] [Related]
14. Display of Streptococcus iniae α-Enolase on the Surface of Virus-Like Particles (VLPs) of Nervous Necrosis Virus (NNV) Using SpyTag/SpyCatcher. Yang JI; Kim KH Mar Biotechnol (NY); 2022 Dec; 24(6):1066-1072. PubMed ID: 36171522 [TBL] [Abstract][Full Text] [Related]
15. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Hatlem D; Trunk T; Linke D; Leo JC Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31052154 [TBL] [Abstract][Full Text] [Related]
16. Compact and modular bioprobe: Integrating SpyCatcher/SpyTag recombinant proteins with zwitterionic polymer-coated quantum dots. Kim S; Bae Y; Park SH; Chen N; Eom S; Kang S; Park J J Colloid Interface Sci; 2023 Dec; 652(Pt A):184-194. PubMed ID: 37595436 [TBL] [Abstract][Full Text] [Related]
17. Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses. Janitzek CM; Matondo S; Thrane S; Nielsen MA; Kavishe R; Mwakalinga SB; Theander TG; Salanti A; Sander AF Malar J; 2016 Nov; 15(1):545. PubMed ID: 27825348 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design. Lagoutte P; Mignon C; Stadthagen G; Potisopon S; Donnat S; Mast J; Lugari A; Werle B Vaccine; 2018 Jun; 36(25):3622-3628. PubMed ID: 29759379 [TBL] [Abstract][Full Text] [Related]
19. Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging. Li E; Brennan CK; Ramirez A; Tucker JA; Butkovich N; Meli VS; Ionkina AA; Nelson EL; Prescher JA; Wang SW Mater Today Bio; 2022 Dec; 17():100455. PubMed ID: 36304975 [TBL] [Abstract][Full Text] [Related]
20. Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe. Moon H; Lee J; Kim H; Heo S; Min J; Kang S Biomater Res; 2014; 18():21. PubMed ID: 26331071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]