BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34142817)

  • 1. Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation.
    Joo B; Hur J; Kim GB; Yun SG; Chung AJ
    ACS Nano; 2021 Aug; 15(8):12888-12898. PubMed ID: 34142817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells.
    Hur J; Park I; Lim KM; Doh J; Cho SG; Chung AJ
    ACS Nano; 2020 Nov; 14(11):15094-15106. PubMed ID: 33034446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering.
    Kwon C; Chung AJ
    Lab Chip; 2023 Mar; 23(7):1758-1767. PubMed ID: 36727443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic and Nanofluidic Intracellular Delivery.
    Hur J; Chung AJ
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004595. PubMed ID: 34096197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput intracellular delivery by viscoelastic mechanoporation.
    Sevenler D; Toner M
    Nat Commun; 2024 Jan; 15(1):115. PubMed ID: 38167490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo.
    DiTommaso T; Cole JM; Cassereau L; Buggé JA; Hanson JLS; Bridgen DT; Stokes BD; Loughhead SM; Beutel BA; Gilbert JB; Nussbaum K; Sorrentino A; Toggweiler J; Schmidt T; Gyuelveszi G; Bernstein H; Sharei A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10907-E10914. PubMed ID: 30381459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic mechanoporation for cellular delivery and analysis.
    Chakrabarty P; Gupta P; Illath K; Kar S; Nagai M; Tseng FG; Santra TS
    Mater Today Bio; 2022 Jan; 13():100193. PubMed ID: 35005598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Stable and Scalable Nanoengineering of Human Primary T Cells via Cell Mechanoporation.
    Hur J; Kim H; Kim U; Kim GB; Kim J; Joo B; Cho D; Lee DS; Chung AJ
    Nano Lett; 2023 Aug; 23(16):7341-7349. PubMed ID: 37506062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Mechanoporation: Current Progress and Applications in Stem Cells.
    Wang R; Wang Z; Tong L; Wang R; Yao S; Chen D; Hu H
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel non-viral delivery method that enables efficient engineering of primary human T cells for ex vivo cell therapy applications.
    Kavanagh H; Dunne S; Martin DS; McFadden E; Gallagher L; Schwaber J; Leonard S; O'Dea S
    Cytotherapy; 2021 Sep; 23(9):852-860. PubMed ID: 33941482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput intracellular delivery by viscoelastic mechanoporation.
    Sevenler D; Toner M
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing.
    VanderBurgh JA; Corso TN; Levy SL; Craighead HG
    Sci Rep; 2023 Apr; 13(1):6857. PubMed ID: 37185305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing.
    Lissandrello CA; Santos JA; Hsi P; Welch M; Mott VL; Kim ES; Chesin J; Haroutunian NJ; Stoddard AG; Czarnecki A; Coppeta JR; Freeman DK; Flusberg DA; Balestrini JL; Tandon V
    Sci Rep; 2020 Oct; 10(1):18045. PubMed ID: 33093518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery.
    Dixit HG; Starr R; Dundon ML; Pairs PI; Yang X; Zhang Y; Nampe D; Ballas CB; Tsutsui H; Forman SJ; Brown CE; Rao MP
    Nano Lett; 2020 Feb; 20(2):860-867. PubMed ID: 31647675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized DNA electroporation for primary human T cell engineering.
    Zhang Z; Qiu S; Zhang X; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):4. PubMed ID: 29378552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery.
    Brooks J; Minnick G; Mukherjee P; Jaberi A; Chang L; Espinosa HD; Yang R
    Small; 2020 Dec; 16(51):e2004917. PubMed ID: 33241661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiplexed microfluidic continuous-flow electroporation system for efficient cell transfection.
    VanderBurgh JA; Corso GT; Levy SL; Craighead HG
    Biomed Microdevices; 2024 Jan; 26(1):10. PubMed ID: 38194117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybridized mechano-electroporation technique for efficient immune cell engineering.
    Morshedi Rad D; Hansen WP; Zhand S; Cranfield C; Ebrahimi Warkiani M
    J Adv Res; 2023 Nov; ():. PubMed ID: 37956863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations.
    Loo J; Sicher I; Goff A; Kim O; Clary N; Alexeev A; Sulchek T; Zamarayeva A; Han S; Calero-Garcia M
    Sci Rep; 2021 Nov; 11(1):21407. PubMed ID: 34725429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.