These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34143042)

  • 1. Inelastic hyperspectral Scheimpflug lidar for microalgae classification and quantification.
    Chen X; Jiang Y; Yao Q; Ji J; Evans J; He S
    Appl Opt; 2021 Jun; 60(16):4778-4786. PubMed ID: 34143042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning.
    Xu Z; Jiang Y; Ji J; Forsberg E; Li Y; He S
    Opt Express; 2020 Oct; 28(21):30686-30700. PubMed ID: 33115064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal hyperspectral microscopic imager for the detection and classification of individual microalgae.
    Luo J; Zhang H; Forsberg E; Hou S; Li S; Xu Z; Chen X; Sun X; He S
    Opt Express; 2021 Nov; 29(23):37281-37301. PubMed ID: 34808804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water monitoring: automated and real time identification and classification of algae using digital microscopy.
    Coltelli P; Barsanti L; Evangelista V; Frassanito AM; Gualtieri P
    Environ Sci Process Impacts; 2014 Nov; 16(11):2656-65. PubMed ID: 25294420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system.
    Gao F; Li J; Lin H; He S
    Opt Express; 2017 Oct; 25(21):25515-25522. PubMed ID: 29041218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals.
    Bi R; Yang J; Huang C; Zhang X; Liao R; Ma H
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Identification of Spherical Engineered Microplastics and Microalgae by Micro-hyperspectral Imaging.
    Huang H; Sun Z; Zhang Z; Chen X; Di Y; Zhu F; Zhang X; Zhan S
    Bull Environ Contam Toxicol; 2021 Oct; 107(4):764-769. PubMed ID: 33599786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel portable filtration system for sampling and concentration of microorganisms: Demonstration on marine microalgae with subsequent quantification using IC-NASBA.
    Loukas CM; Mowlem MC; Tsaloglou MN; Green NG
    Harmful Algae; 2018 May; 75():94-104. PubMed ID: 29778229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmful algal blooms caused by Phaeocystis globosa from 1997 to 2018 in Chinese coastal waters.
    Wang K; Chen B; Gao Y; Lin H
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112949. PubMed ID: 34547638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement and application of qPCR assay revealed new insight on early warning of Phaeocystis globosa bloom.
    Wang J; Wang Y; Lai J; Li J; Yu K
    Water Res; 2023 Feb; 229():119439. PubMed ID: 36473412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic and real time recognition of microalgae by means of pigment signature and shape.
    Coltelli P; Barsanti L; Evangelista V; Frassanito AM; Passarelli V; Gualtieri P
    Environ Sci Process Impacts; 2013 Jul; 15(7):1397-410. PubMed ID: 23712130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole cell hybridisation for monitoring harmful marine microalgae.
    Toebe K
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6816-23. PubMed ID: 23835584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship.
    Xiao X; Li C; Huang H; Lee YP
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23763-23776. PubMed ID: 31209750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the biology and ecology of the harmful algal bloom species Phaeocystis globosa in China: Progresses in the last 20 years.
    Wang X; Song H; Wang Y; Chen N
    Harmful Algae; 2021 Jul; 107():102057. PubMed ID: 34456018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentially harmful microalgae and algal blooms in the Red Sea: Current knowledge and research needs.
    Mohamed ZA
    Mar Environ Res; 2018 Sep; 140():234-242. PubMed ID: 29970250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: steps taken to optimise probe specificity and signal intensity prior to field validation of the MIDTAL (Microarray for the Detection of Toxic Algae).
    Medlin LK
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6686-9. PubMed ID: 23636588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the MIDTAL microarray chip for monitoring toxic microalgae in the Orkney Islands, U.K.
    Taylor JD; Berzano M; Percy L; Lewis J
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6765-77. PubMed ID: 23292222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of microplastics on the toxicity of chlorpyrifos to the microalgae Isochrysis galbana, clone t-ISO.
    Garrido S; Linares M; Campillo JA; Albentosa M
    Ecotoxicol Environ Saf; 2019 May; 173():103-109. PubMed ID: 30769202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France.
    Kegel JU; Del Amo Y; Medlin LK
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6690-704. PubMed ID: 23179211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of the applicability of microarrays for monitoring toxic algae in Irish coastal waters.
    McCoy GR; Touzet N; Fleming GT; Raine R
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6751-64. PubMed ID: 23184126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.