BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34143229)

  • 1. Towards rare earth element recovery from wastewaters: biosorption using phototrophic organisms.
    Heilmann M; Breiter R; Becker AM
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5229-5239. PubMed ID: 34143229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements.
    Paper M; Koch M; Jung P; Lakatos M; Nilges T; Brück TB
    Front Bioeng Biotechnol; 2023; 11():1130939. PubMed ID: 36926689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stripped: contribution of cyanobacterial extracellular polymeric substances to the adsorption of rare earth elements from aqueous solutions.
    Paper M; Jung P; Koch M; Lakatos M; Nilges T; Brück TB
    Front Bioeng Biotechnol; 2023; 11():1299349. PubMed ID: 38173874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting the removal of selected heavy metals using a polymer immobilised Sphagnum moss as a biosorbent.
    Zhang Y; Banks C
    Environ Technol; 2005 Jul; 26(7):733-43. PubMed ID: 16080329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption of rare-earth and toxic metals from aqueous medium using different alternative biosorbents: evaluation of metallic affinity.
    da Costa TB; da Silva MGC; Vieira MGA
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):79788-79797. PubMed ID: 34561807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold biosorption by exopolysaccharide producing cyanobacteria and purple nonsulphur bacteria.
    Colica G; Caparrotta S; Bertini G; De Philippis R
    J Appl Microbiol; 2012 Dec; 113(6):1380-8. PubMed ID: 22958124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of biomass elemental composition and ion-exchange in metal sorption by algae.
    Carreira ARF; Veloso T; Macário IPE; Pereira JL; Ventura SPM; Passos H; Coutinho JAP
    Chemosphere; 2023 Feb; 314():137675. PubMed ID: 36586444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption.
    Brewer A; Chang E; Park DM; Kou T; Li Y; Lammers LN; Jiao Y
    Environ Sci Technol; 2019 Jul; 53(13):7714-7723. PubMed ID: 31198021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and Investigation of Natural Rare Earth Metal Chelating Agents From
    Jurkowski W; Paper M; Brück TB
    Front Bioeng Biotechnol; 2022; 10():833122. PubMed ID: 35223796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii.
    Tüzün I; Bayramoğlu G; Yalçin E; Başaran G; Celik G; Arica MY
    J Environ Manage; 2005 Oct; 77(2):85-92. PubMed ID: 15993534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.
    Muñoz R; Alvarez MT; Muñoz A; Terrazas E; Guieysse B; Mattiasson B
    Chemosphere; 2006 May; 63(6):903-11. PubMed ID: 16307789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead metal biosorption and isotherms studies by metal-resistant Bacillus strain MRS-2 bacterium.
    Hoyle-Gardner J; Jones W; Badisa VLD; Mwashote B; Ibeanusi V; Gaines T; Lowenthal H; Tucker L
    J Basic Microbiol; 2021 Aug; 61(8):697-708. PubMed ID: 34228374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immobilization of Arthrospira platensis biomass in different matrices--a practical application for lead biosorption.
    Duda-Chodak A; Wajda Ł; Tarko T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):509-17. PubMed ID: 23383636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms.
    Sheng PX; Ting YP; Chen JP; Hong L
    J Colloid Interface Sci; 2004 Jul; 275(1):131-41. PubMed ID: 15158390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of rare earth elements from luminophores by G. sulphuraria (Cyanidiophytina, Rhodophyta).
    Iovinella M; Palmieri M; Papa S; Auciello C; Ventura R; Lombardo F; Race M; Lubritto C; di Cicco MR; Davis SJ; Trifuoggi M; Marano A; Ciniglia C
    Environ Res; 2023 Dec; 239(Pt 1):117281. PubMed ID: 37827370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves.
    Sangi MR; Shahmoradi A; Zolgharnein J; Azimi GH; Ghorbandoost M
    J Hazard Mater; 2008 Jul; 155(3):513-22. PubMed ID: 18191021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass.
    Hawari AH; Mulligan CN
    Bioresour Technol; 2006 Mar; 97(4):692-700. PubMed ID: 15935654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems.
    Rodrigues MS; Ferreira LS; de Carvalho JC; Lodi A; Finocchio E; Converti A
    J Hazard Mater; 2012 May; 217-218():246-55. PubMed ID: 22480702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.