These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34143316)

  • 1. Reconstruction of sedimentation rates based on the chronological framework of Lake Pykara, Tamil Nadu, India.
    Singh KK; Vasudevan S
    Environ Monit Assess; 2021 Jun; 193(7):428. PubMed ID: 34143316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes.
    Kuzmenkova NV; Ivanov MM; Alexandrin MY; Grachev AM; Rozhkova AK; Zhizhin KD; Grabenko EA; Golosov VN
    Environ Pollut; 2020 Jul; 262():114269. PubMed ID: 32146365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sediment profile dating and reconstructing nuclear events from annually laminated lake sediments in northern Finland.
    Haltia E; Leppänen AP; Kallio A; Saarinen T
    J Environ Radioact; 2021 Jul; 233():106611. PubMed ID: 33857821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent changes in Red Lake (Romania) sedimentation rate determined from depth profiles of 210Pb and 137Cs radioisotopes.
    Begy R; Cosma C; Timar A
    J Environ Radioact; 2009 Aug; 100(8):644-8. PubMed ID: 19540636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 137Cs Lake Sediment Depth Profiles and Inventories Within Four Lakes of Idaho's Sawtooth Wilderness.
    Bishop BT; Brey R
    Health Phys; 2018 Oct; 115(4):458-464. PubMed ID: 30148811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of sedimentation rates and sediment dynamics in Danube Delta lake system (Romania) by
    Begy RC; Simon H; Kelemen S; Preoteasa L
    J Environ Radioact; 2018 Dec; 192():95-104. PubMed ID: 29909226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fallout isotope chronology of the near-surface sediment record of Lake Bolătău.
    Bihari Á; Karlik M; Mîndrescu M; Szalai Z; Grădinaru I; Kern Z
    J Environ Radioact; 2018 Jan; 181():32-41. PubMed ID: 29096151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking sedimentary total organic carbon to
    Anjum R; Gao J; Tang Q; He X; Zhang X; Long Y; Shi Z; Wang M
    Chemosphere; 2017 May; 174():243-252. PubMed ID: 28171840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radionuclides in sediments of the Aare and Rhine river system: Fallouts, discharges, depth-age relations, mass accumulation rates and transport along the river.
    Klemt E; Putyrskaya V; Röllin S; Corcho-Alvarado JA; Sahli H
    J Environ Radioact; 2021 Jun; 232():106584. PubMed ID: 33744558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. serac: an R package for ShortlivEd RAdionuclide chronology of recent sediment cores.
    Bruel R; Sabatier P
    J Environ Radioact; 2020 Dec; 225():106449. PubMed ID: 33120029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inconsistencies between
    Baskaran M; Bianchi TS; Filley TR
    J Environ Radioact; 2017 Aug; 174():10-16. PubMed ID: 27613199
    [No Abstract]   [Full Text] [Related]  

  • 12. Characteristics of artificial radionuclides in sedimentary soil cores from a volcanic crater lake.
    Yim SA; Chae JS; Byun JI; Ko SH
    J Environ Radioact; 2018 Dec; 192():532-542. PubMed ID: 30130738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive study of the mountainous lake sediments in relation to natural and anthropogenic processes and time (Mały Staw Lake, Poland).
    Szarlowicz K; Reczynski W; Czajka A; Spyt B; Szacilowski G
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3335-3347. PubMed ID: 29150803
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Woszczyk M; Poręba G; Malinowski Ł
    J Environ Radioact; 2017 Apr; 169-170():174-185. PubMed ID: 28122279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology.
    Alvarez-Iglesias P; Quintana B; Rubio B; Pérez-Arlucea M
    J Environ Radioact; 2007; 98(3):229-50. PubMed ID: 17611005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities and geochronology of
    Matisoff G
    J Environ Radioact; 2017 Feb; 167():222-234. PubMed ID: 27889078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Problems with the dating of sediment core using excess (210)Pb in a freshwater system impacted by large scale watershed changes.
    Baskaran M; Nix J; Kuyper C; Karunakara N
    J Environ Radioact; 2014 Dec; 138():355-63. PubMed ID: 25085208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The records of
    Peng A; Chen M; Li X; He H
    J Environ Radioact; 2024 Feb; 272():107364. PubMed ID: 38171109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant.
    Marčiulionienė D; Mažeika J; Lukšienė B; Jefanova O; Mikalauskienė R; Paškauskas R
    J Environ Radioact; 2015 Jul; 145():48-57. PubMed ID: 25863720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of sedimentation rates based on the excess of radium 228 in granitic reservoir sediments.
    Reyss JL; Mangeret A; Courbet C; Bassot S; Alcalde G; Thouvenot A; Guillevic J
    J Environ Radioact; 2016 Oct; 162-163():8-13. PubMed ID: 27191741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.