BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34143351)

  • 1. Diffusive search and trajectories on tubular networks: a propagator approach.
    Scott ZC; Brown AI; Mogre SS; Westrate LM; Koslover EF
    Eur Phys J E Soft Matter; 2021 Jun; 44(6):80. PubMed ID: 34143351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of global structure on diffusive exploration of organelle networks.
    Brown AI; Westrate LM; Koslover EF
    Sci Rep; 2020 Mar; 10(1):4984. PubMed ID: 32188905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAST SOLVER FOR DIFFUSIVE TRANSPORT TIMES ON DYNAMIC INTRACELLULAR NETWORKS.
    Elam L; Quiñones-Frías MC; Zhang Y; Rodal AA; Fai TG
    SIAM J Appl Math; 2024; 84(3):S476-S492. PubMed ID: 38912397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles.
    Olveczky BP; Verkman AS
    Biophys J; 1998 May; 74(5):2722-30. PubMed ID: 9591696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics.
    Scott ZC; Koning K; Vanderwerp M; Cohen L; Westrate LM; Koslover EF
    Biophys J; 2023 Aug; 122(15):3191-3205. PubMed ID: 37401053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA folding kinetics using Monte Carlo and Gillespie algorithms.
    Clote P; Bayegan AH
    J Math Biol; 2018 Apr; 76(5):1195-1227. PubMed ID: 28780735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact Variance-Reduced Simulation of Lattice Continuous-Time Markov Chains with Applications in Reaction Networks.
    Maginnis PA; West M; Dullerud GE
    Bull Math Biol; 2019 Aug; 81(8):3159-3184. PubMed ID: 30761456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.
    Slepoy A; Thompson AP; Plimpton SJ
    J Chem Phys; 2008 May; 128(20):205101. PubMed ID: 18513044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and exact sampling of transition path ensembles on Markovian networks.
    Sharpe DJ; Wales DJ
    J Chem Phys; 2020 Jul; 153(2):024121. PubMed ID: 32668926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic simulation and analysis of biomolecular reaction networks.
    Frazier JM; Chushak Y; Foy B
    BMC Syst Biol; 2009 Jun; 3():64. PubMed ID: 19534796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A correlated thin-section and freeze-fracture analysis of guinea pig adrenocortical cells.
    Black VH; Robbins D; McNamara N; Huima T
    Am J Anat; 1979 Dec; 156(4):453-503. PubMed ID: 525624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice kinetic Monte Carlo simulations of convective-diffusive systems.
    Flamm MH; Diamond SL; Sinno T
    J Chem Phys; 2009 Mar; 130(9):094904. PubMed ID: 19275421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of the microstructure and transport properties of biopolymer networks.
    Jiao Y; Torquato S
    Phys Biol; 2012 Jun; 9(3):036009. PubMed ID: 22683739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational tool for Monte Carlo simulations of biomolecular reaction networks modeled on physical principles.
    Li IT; Mills E; Truong K
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):24-30. PubMed ID: 19887331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of the tubular endoplasmic reticulum network with purified components.
    Powers RE; Wang S; Liu TY; Rapoport TA
    Nature; 2017 Mar; 543(7644):257-260. PubMed ID: 28225760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.
    Lovy A; Molina AJ; Cerqueira FM; Trudeau K; Shirihai OS
    J Vis Exp; 2012 Jul; (65):e3991. PubMed ID: 22847388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.