These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34143397)

  • 1. Lens regeneration: scientific discoveries and clinical possibilities.
    Gu Y; Yao K; Fu Q
    Mol Biol Rep; 2021 May; 48(5):4911-4923. PubMed ID: 34143397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract.
    Lovicu FJ; Shin EH; McAvoy JW
    Exp Eye Res; 2016 Jan; 142():92-101. PubMed ID: 26003864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Functional Lentoid Bodies From Human Induced Pluripotent Stem Cells Derived From Urinary Cells.
    Fu Q; Qin Z; Jin X; Zhang L; Chen Z; He J; Ji J; Yao K
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):517-527. PubMed ID: 28125839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt5a Contributes to the Differentiation of Human Embryonic Stem Cells into Lentoid Bodies Through the Noncanonical Wnt/JNK Signaling Pathway.
    Han C; Li J; Wang C; Ouyang H; Ding X; Liu Y; Chen S; Luo L
    Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3449-3460. PubMed ID: 30025083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions.
    Yang C; Yang Y; Brennan L; Bouhassira EE; Kantorow M; Cvekl A
    FASEB J; 2010 Sep; 24(9):3274-83. PubMed ID: 20410439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell signaling pathways in vertebrate lens regeneration.
    Henry JJ; Thomas AG; Hamilton PW; Moore L; Perry KJ
    Curr Top Microbiol Immunol; 2013; 367():75-98. PubMed ID: 23224710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling.
    Hamilton PW; Sun Y; Henry JJ
    Exp Eye Res; 2016 Apr; 145():206-215. PubMed ID: 26778749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology.
    Cvekl A; Camerino MJ
    Cells; 2022 Nov; 11(21):. PubMed ID: 36359912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology.
    Shu DY; Lovicu FJ
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens regeneration in mammals: a review.
    Gwon A
    Surv Ophthalmol; 2006; 51(1):51-62. PubMed ID: 16414361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Glutathione Level Promotes Epithelial-Mesenchymal Transition in Lens Epithelial Cells via a Wnt/β-Catenin-Mediated Pathway: Relevance for Cataract Therapy.
    Wei Z; Caty J; Whitson J; Zhang AD; Srinivasagan R; Kavanagh TJ; Yan H; Fan X
    Am J Pathol; 2017 Nov; 187(11):2399-2412. PubMed ID: 28827139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant lens fiber differentiation in anterior subcapsular cataract formation: a process dependent on reduced levels of Pax6.
    Lovicu FJ; Steven P; Saika S; McAvoy JW
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1946-53. PubMed ID: 15161862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling.
    Day RC; Beck CW
    BMC Dev Biol; 2011 Sep; 11():54. PubMed ID: 21896182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens regeneration using endogenous stem cells with gain of visual function.
    Lin H; Ouyang H; Zhu J; Huang S; Liu Z; Chen S; Cao G; Li G; Signer RA; Xu Y; Chung C; Zhang Y; Lin D; Patel S; Wu F; Cai H; Hou J; Wen C; Jafari M; Liu X; Luo L; Zhu J; Qiu A; Hou R; Chen B; Chen J; Granet D; Heichel C; Shang F; Li X; Krawczyk M; Skowronska-Krawczyk D; Wang Y; Shi W; Chen D; Zhong Z; Zhong S; Zhang L; Chen S; Morrison SJ; Maas RL; Zhang K; Liu Y
    Nature; 2016 Mar; 531(7594):323-8. PubMed ID: 26958831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular and molecular bases of vertebrate lens regeneration.
    Henry JJ
    Int Rev Cytol; 2003; 228():195-265. PubMed ID: 14667045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderate oxidative stress promotes epithelial-mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways.
    Chen X; Yan H; Chen Y; Li G; Bin Y; Zhou X
    Mol Cell Biochem; 2021 Mar; 476(3):1631-1642. PubMed ID: 33417163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peter Bishop Lecture: growth factors in lens development and cataract: key roles for fibroblast growth factor and TGF-beta.
    McAvoy JW; Chamberlain CG; de Iongh RU; Hales AM; Lovicu FJ
    Clin Exp Ophthalmol; 2000 Jun; 28(3):133-9. PubMed ID: 10981780
    [No Abstract]   [Full Text] [Related]  

  • 18. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.
    Qiu X; Yang J; Liu T; Jiang Y; Le Q; Lu Y
    PLoS One; 2012; 7(3):e32612. PubMed ID: 22403680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deregulation of lens epithelial cell proliferation and differentiation during the development of TGFbeta-induced anterior subcapsular cataract.
    Lovicu FJ; Ang S; Chorazyczewska M; McAvoy JW
    Dev Neurosci; 2004; 26(5-6):446-55. PubMed ID: 15855773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation.
    de Iongh RU; Wederell E; Lovicu FJ; McAvoy JW
    Cells Tissues Organs; 2005; 179(1-2):43-55. PubMed ID: 15942192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.