These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34143438)
21. Effects of solution environment on mammalian cell fermentation broth properties: enhanced impurity removal and clarification performance. Westoby M; Chrostowski J; de Vilmorin P; Smelko JP; Romero JK Biotechnol Bioeng; 2011 Jan; 108(1):50-8. PubMed ID: 20812295 [TBL] [Abstract][Full Text] [Related]
22. Repurposing fed-batch media and feeds for highly productive CHO perfusion processes. Kuiper M; Spencer C; Fäldt E; Vuillemez A; Holmes W; Samuelsson T; Gruber D; Castan A Biotechnol Prog; 2019 Jul; 35(4):e2821. PubMed ID: 30985083 [TBL] [Abstract][Full Text] [Related]
23. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053 [TBL] [Abstract][Full Text] [Related]
24. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938 [TBL] [Abstract][Full Text] [Related]
25. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Zhang W; Liu X; Tang H; Zhang X; Zhou Y; Fan L; Wang H; Tan WS; Zhao L Appl Microbiol Biotechnol; 2020 Aug; 104(16):6953-6966. PubMed ID: 32577803 [TBL] [Abstract][Full Text] [Related]
26. A high-throughput media design approach for high performance mammalian fed-batch cultures. Rouiller Y; Périlleux A; Collet N; Jordan M; Stettler M; Broly H MAbs; 2013; 5(3):501-11. PubMed ID: 23563583 [TBL] [Abstract][Full Text] [Related]
27. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. Kishishita S; Katayama S; Kodaira K; Takagi Y; Matsuda H; Okamoto H; Takuma S; Hirashima C; Aoyagi H J Biosci Bioeng; 2015 Jul; 120(1):78-84. PubMed ID: 25678240 [TBL] [Abstract][Full Text] [Related]
29. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors. Mallaney M; Wang SH; Sreedhara A Biotechnol Prog; 2014; 30(3):562-70. PubMed ID: 24777986 [TBL] [Abstract][Full Text] [Related]
30. Reduction of medium consumption in perfusion mammalian cell cultures using a perfusion rate equivalent concentrated nutrient feed. Bielser JM; Kraus L; Burgos-Morales O; Broly H; Souquet J Biotechnol Prog; 2020 Sep; 36(5):e3026. PubMed ID: 32415806 [TBL] [Abstract][Full Text] [Related]
31. Bench-Scale Stirred-Tank Bioreactor for Recombinant Protein Production in Chinese Hamster Ovary (CHO) Cells in Suspension. Monteil DT; Kuan J Methods Mol Biol; 2018; 1850():133-145. PubMed ID: 30242685 [TBL] [Abstract][Full Text] [Related]
32. Effect of copper variation in yeast hydrolysate on C-terminal lysine levels of a monoclonal antibody. Mitchelson FG; Mondia JP; Hughes EH Biotechnol Prog; 2017 Mar; 33(2):463-468. PubMed ID: 27863144 [TBL] [Abstract][Full Text] [Related]
33. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related]
34. Feed optimization in fed-batch culture. Costa AR; Rodrigues ME; Henriques M; Oliveira R; Azeredo J Methods Mol Biol; 2014; 1104():105-16. PubMed ID: 24297412 [TBL] [Abstract][Full Text] [Related]
35. Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration. Webster TA; Hadley BC; Dickson M; Busa JK; Jaques C; Mason C Bioprocess Biosyst Eng; 2021 Jan; 44(1):127-140. PubMed ID: 32816075 [TBL] [Abstract][Full Text] [Related]
36. Combined metabolomics and proteomics reveals hypoxia as a cause of lower productivity on scale-up to a 5000-liter CHO bioprocess. Gao Y; Ray S; Dai S; Ivanov AR; Abu-Absi NR; Lewis AM; Huang Z; Xing Z; Borys MC; Li ZJ; Karger BL Biotechnol J; 2016 Sep; 11(9):1190-200. PubMed ID: 27213298 [TBL] [Abstract][Full Text] [Related]
37. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810 [TBL] [Abstract][Full Text] [Related]
38. Quantifying the impact of cell culture media on CHO cell growth and protein production. Combe M; Sokolenko S Biotechnol Adv; 2021; 50():107761. PubMed ID: 33945850 [TBL] [Abstract][Full Text] [Related]
39. Analysis of Tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture. Gomez N; Ambhaikar M; Zhang L; Huang CJ; Barkhordarian H; Lull J; Gutierrez C Biotechnol Prog; 2017 Mar; 33(2):490-499. PubMed ID: 27977914 [TBL] [Abstract][Full Text] [Related]
40. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Lin H; Leighty RW; Godfrey S; Wang SB Biotechnol Prog; 2017 Jul; 33(4):891-901. PubMed ID: 28371394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]