These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34143593)

  • 21. Refillable Fuel-Loading Microshell Motors for Persistent Motion in a Fuel-Free Environment.
    Wang D; Chen C; Sun J; Ao H; Xiao W; Ju H; Wu J
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reprogrammable Logic Gate and Logic Circuit Based on Multistimuli-Responsive Raspberry-like Micromotors.
    Zhang L; Zhang H; Liu M; Dong B
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15654-60. PubMed ID: 27237969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A remotely steerable Janus micromotor adsorbent for the active remediation of Cs-contaminated water.
    Hwang J; Yang HM; Lee KW; Jung YI; Lee KJ; Park CW
    J Hazard Mater; 2019 May; 369():416-422. PubMed ID: 30784971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconfigurable OR and XOR logic gates based on dual responsive on-off-on micromotors.
    Dong Y; Liu M; Zhang H; Dong B
    Nanoscale; 2016 Apr; 8(15):8378-83. PubMed ID: 27045624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micromotor-based energy generation.
    Singh VV; Soto F; Kaufmann K; Wang J
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6896-9. PubMed ID: 25906739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Triboelectric micromotors actuated by ultralow frequency mechanical stimuli.
    Yang H; Pang Y; Bu T; Liu W; Luo J; Jiang D; Zhang C; Wang ZL
    Nat Commun; 2019 May; 10(1):2309. PubMed ID: 31127107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors.
    Ji Y; Lin X; Zhang H; Wu Y; Li J; He Q
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4184-4188. PubMed ID: 30701642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimetallic Photo-Activated and Steerable Janus Micromotors as Active Microcleaners for Wastewater.
    Ikram M; Hu C; Zhou Y; Gao Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33439-33450. PubMed ID: 38889105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotropic Hedgehog-Shaped-TiO
    Jiang H; He X; Ma Y; Fu B; Xu X; Subramanian B; Hu C
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5406-5417. PubMed ID: 33475348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
    Dong R; Hu Y; Wu Y; Gao W; Ren B; Wang Q; Cai Y
    J Am Chem Soc; 2017 Feb; 139(5):1722-1725. PubMed ID: 28117995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suction-Cup-Inspired Adhesive Micromotors for Drug Delivery.
    Cai L; Zhao C; Chen H; Fan L; Zhao Y; Qian X; Chai R
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103384. PubMed ID: 34726356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steering Micromotors via Reprogrammable Optoelectronic Paths.
    Chen X; Chen X; Elsayed M; Edwards H; Liu J; Peng Y; Zhang HP; Zhang S; Wang W; Wheeler AR
    ACS Nano; 2023 Mar; 17(6):5894-5904. PubMed ID: 36912818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiwavelength Light-Responsive Au/B-TiO
    Jang B; Hong A; Kang HE; Alcantara C; Charreyron S; Mushtaq F; Pellicer E; Büchel R; Sort J; Lee SS; Nelson BJ; Pané S
    ACS Nano; 2017 Jun; 11(6):6146-6154. PubMed ID: 28590716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of acid-driven magnetically imprinted micromotors and selective loading of phycocyanin.
    Yang G; Liu J; Zhang Z; Yuan L; Tian H; Yang X
    J Mater Chem B; 2023 Nov; 11(44):10728-10737. PubMed ID: 37921104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial Control over Catalyst Positioning for Increased Micromotor Efficiency.
    Keller S; Teora SP; Keskin A; Daris LJC; Samuels NAPE; Boujemaa M; Wilson DA
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-Driven Au-WO
    Zhang Q; Dong R; Wu Y; Gao W; He Z; Ren B
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4674-4683. PubMed ID: 28097861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manganese Oxide Based Catalytic Micromotors: Effect of Polymorphism on Motion.
    Safdar M; Minh TD; Kinnunen N; Jänis J
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32624-32629. PubMed ID: 27933845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Metal Hybrid Micromotor.
    Li D; Zheng Y; Zhang Z; Zhang Q; Huang X; Dong R; Cai Y; Wang L
    Front Bioeng Biotechnol; 2022; 10():844328. PubMed ID: 35237586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.