These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34143593)

  • 41. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.
    Wang L; Zhu H; Shi Y; Ge Y; Feng X; Liu R; Li Y; Ma Y; Wang L
    Nanoscale; 2018 Jun; 10(24):11384-11391. PubMed ID: 29877544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation.
    Tong J; Wang D; Wang D; Xu F; Duan R; Zhang D; Fan J; Dong B
    Langmuir; 2020 Jun; 36(25):6930-6937. PubMed ID: 31604011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H
    Panda A; Reddy AS; Venkateswarlu S; Yoon M
    Nanoscale; 2018 Aug; 10(34):16268-16277. PubMed ID: 30128456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode.
    Lu X; Wei Y; Ou H; Zhao C; Shi L; Liu W
    Small; 2021 Nov; 17(44):e2104516. PubMed ID: 34608753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A substrate-free graphene oxide-based micromotor for rapid adsorption of antibiotics.
    Dong Y; Yi C; Yang S; Wang J; Chen P; Liu X; Du W; Wang S; Liu BF
    Nanoscale; 2019 Mar; 11(10):4562-4570. PubMed ID: 30806402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface Roughening of Pt-Polystyrene Spherical Janus Micromotors for Enhanced Motion Speed.
    Zhou L; Wei Y; Zhang H; Huang Z; Zhu S; Zhao Z; Guo Y; Fu H; Zhao Q; Cai W
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing.
    Kichatov B; Korshunov A; Sudakov V; Gubernov V; Golubkov A; Kiverin A
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38877-38885. PubMed ID: 34351762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Switching from Chemical to Electrical Micromotor Propulsion across a Gradient of Gastric Fluid via Magnetic Rolling.
    Das SS; Erez S; Karshalev E; Wu Y; Wang J; Yossifon G
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30290-30298. PubMed ID: 35748802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.
    Gao Y; Mou F; Feng Y; Che S; Li W; Xu L; Guan J
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22704-22712. PubMed ID: 28603960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fuel-Free Light-Powered TiO
    Kong L; Mayorga-Martinez CC; Guan J; Pumera M
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22427-22434. PubMed ID: 29916690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell-Like Micromotors.
    Esteban-Fernández de Ávila B; Gao W; Karshalev E; Zhang L; Wang J
    Acc Chem Res; 2018 Sep; 51(9):1901-1910. PubMed ID: 30074758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shape-Tunable Janus Micromotors via Surfactant-Induced Dewetting.
    Zhu J; Wang H; Zhang Z
    Langmuir; 2021 Apr; 37(16):4964-4970. PubMed ID: 33861610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Light-Responsive Nanofibrous Motor with Simultaneously Precise Locomotion and Reversible Deformation.
    Feng P; Du X; Guo J; Wang K; Song B
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8985-8996. PubMed ID: 33583177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Micromotors with Droplet Microfluidics.
    Zhou C; Zhu P; Tian Y; Xu M; Wang L
    ACS Nano; 2019 Jun; 13(6):6319-6329. PubMed ID: 31091410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sulfur-encapsulated zeolite micromotors for the selective removal of cesium from high-salt water with accelerated cleanup times.
    Lee Y; Park CW; Kim HJ; Kim SJ; Lee TS; Yang HM
    Chemosphere; 2021 Aug; 276():130190. PubMed ID: 33725622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanoparticle mediated micromotor motion.
    Liu M; Liu L; Gao W; Su M; Ge Y; Shi L; Zhang H; Dong B; Li CY
    Nanoscale; 2015 Mar; 7(11):4949-55. PubMed ID: 25689965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating Time-Dependent Active Motion of Janus Micromotors using Dynamic Light Scattering.
    McGlasson A; Bradley LC
    Small; 2021 Dec; 17(52):e2104926. PubMed ID: 34655162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micromotor Manipulation Using Ultrasonic Active Traveling Waves.
    Cao HX; Jung D; Lee HS; Go G; Nan M; Choi E; Kim CS; Park JO; Kang B
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33668512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming.
    Gao Q; Yang Z; Zhu R; Wang J; Xu P; Liu J; Chen X; Yan Z; Peng Y; Wang Y; Zheng H; Cai F; Wang W
    ACS Nano; 2023 Mar; 17(5):4729-4739. PubMed ID: 36815761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.