BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34143738)

  • 1. Clustering of Cancer Attributed Networks by Dynamically and Jointly Factorizing Multi-Layer Graphs.
    Huang Z; Wang Y; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2737-2748. PubMed ID: 34143738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-Specific Modules Detection in Cancer Multi-Layer Networks.
    Ma X; Zhao W; Wu W
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1170-1179. PubMed ID: 35609099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Module Detection in Temporal Attributed Networks of Cancers.
    Li D; Zhang S; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2219-2230. PubMed ID: 33780342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MultiSimNeNc: A network representation learning-based module identification method by network embedding and clustering.
    Wu H; Liang B; Chen Z; Zhang H
    Comput Biol Med; 2023 Apr; 156():106703. PubMed ID: 36889026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks.
    Wang P; Gao L; Hu Y; Li F
    BMC Bioinformatics; 2018 Oct; 19(1):394. PubMed ID: 30373534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting Stage-Specific and Dynamic Modules Through Analyzing Multiple Networks Associated with Cancer Progression.
    Ma X; Tang W; Wang P; Guo X; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):647-658. PubMed ID: 27845671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data.
    Wang H; Liu Z; Ma X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3134-3145. PubMed ID: 38709615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized Multi-View Subspace Clustering for Common Modules Across Cancer Stages.
    Zhang E; Ma X
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29701681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrative Framework of Heterogeneous Genomic Data for Cancer Dynamic Modules Based on Matrix Decomposition.
    Ma X; Sun P; Gong M
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):305-316. PubMed ID: 32750874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint clustering of protein interaction networks through Markov random walk.
    Wang Y; Qian X
    BMC Syst Biol; 2014; 8 Suppl 1(Suppl 1):S9. PubMed ID: 24565376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving the structure of interactomes with hierarchical agglomerative clustering.
    Park Y; Bader JS
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S44. PubMed ID: 21342576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data.
    Wu MJ; Gao YL; Liu JX; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1823-1834. PubMed ID: 31634852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks.
    Loers JU; Vermeirssen V
    BMC Bioinformatics; 2022 Sep; 23(1):363. PubMed ID: 36064320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Cancer Driver Modules Based on Graph Clustering from Multiomics Data.
    Zhang W; Wang SL; Liu Y
    J Comput Biol; 2021 Oct; 28(10):1007-1020. PubMed ID: 34529511
    [No Abstract]   [Full Text] [Related]  

  • 20. Clustering of Multilayer Networks Using Joint Learning Algorithm With Orthogonality and Specificity of Features.
    Wu W; Gong M; Ma X
    IEEE Trans Cybern; 2023 Aug; 53(8):4972-4985. PubMed ID: 35286272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.