These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34143792)
1. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792 [TBL] [Abstract][Full Text] [Related]
2. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Lim JM; Bertrand N; Valencia PM; Rhee M; Langer R; Jon S; Farokhzad OC; Karnik R Nanomedicine; 2014 Feb; 10(2):401-9. PubMed ID: 23969105 [TBL] [Abstract][Full Text] [Related]
3. The impact of microfluidic mixing of triblock micelleplexes on in vitro / in vivo gene silencing and intracellular trafficking. Feldmann DP; Xie Y; Jones SK; Yu D; Moszczynska A; Merkel OM Nanotechnology; 2017 Jun; 28(22):224001. PubMed ID: 28488596 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics. Martins C; Sarmento B Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation. Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983 [TBL] [Abstract][Full Text] [Related]
6. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. El-Hammadi MM; Delgado ÁV; Melguizo C; Prados JC; Arias JL Int J Pharm; 2017 Jan; 516(1-2):61-70. PubMed ID: 27825867 [TBL] [Abstract][Full Text] [Related]
7. Modulation of immunosuppressive effect of rapamycin via microfluidic encapsulation within PEG-PLGA nanoparticles. Wu W; Liu R; Guo J; Hu Z; An C; Zhang Y; Liu T; Cen L; Pan Y J Biomater Appl; 2024 Feb; 38(7):821-833. PubMed ID: 38145897 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic preparation and optimization of sorafenib-loaded poly(ethylene glycol-block-caprolactone) nanoparticles for cancer therapy applications. Känkänen V; Fernandes M; Liu Z; Seitsonen J; Hirvonen SP; Ruokolainen J; Pinto JF; Hirvonen J; Balasubramanian V; Santos HA J Colloid Interface Sci; 2023 Mar; 633():383-395. PubMed ID: 36462264 [TBL] [Abstract][Full Text] [Related]
10. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. Pramual S; Lirdprapamongkol K; Svasti J; Bergkvist M; Jouan-Hureaux V; Arnoux P; Frochot C; Barberi-Heyob M; Niamsiri N J Photochem Photobiol B; 2017 Aug; 173():12-22. PubMed ID: 28554072 [TBL] [Abstract][Full Text] [Related]
11. Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Singh R; Kesharwani P; Mehra NK; Singh S; Banerjee S; Jain NK Drug Dev Ind Pharm; 2015; 41(11):1888-901. PubMed ID: 25738812 [TBL] [Abstract][Full Text] [Related]
12. Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic agents by nanoprecipitation method. Almoustafa HA; Alshawsh MA; Chik Z Int J Pharm; 2017 Nov; 533(1):275-284. PubMed ID: 28943210 [TBL] [Abstract][Full Text] [Related]
13. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039 [TBL] [Abstract][Full Text] [Related]
14. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Song W; Tang Z; Lei T; Wen X; Wang G; Zhang D; Deng M; Tang X; Chen X Nanomedicine; 2016 Feb; 12(2):377-86. PubMed ID: 26711966 [TBL] [Abstract][Full Text] [Related]
15. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Morikawa Y; Tagami T; Hoshikawa A; Ozeki T Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Tahir N; Madni A; Li W; Correia A; Khan MM; Rahim MA; Santos HA Int J Pharm; 2020 May; 581():119275. PubMed ID: 32229283 [TBL] [Abstract][Full Text] [Related]
17. Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform. Bao Y; Maeki M; Ishida A; Tani H; Tokeshi M PLoS One; 2022; 17(8):e0271050. PubMed ID: 35925917 [TBL] [Abstract][Full Text] [Related]
18. Therapeutic Peptides Are Preferentially Solubilized in Specific Microenvironments within PEG-PLGA Polymer Nanoparticles. López-Rios de Castro R; Ziolek RM; Ulmschneider MB; Lorenz CD Nano Lett; 2024 Feb; 24(6):2011-2017. PubMed ID: 38306708 [TBL] [Abstract][Full Text] [Related]
19. Influence of Albumin in the Microfluidic Synthesis of PEG-PLGA Nanoparticles. Poller B; Painter GF; Walker GF Pharm Nanotechnol; 2019; 7(6):460-468. PubMed ID: 31657694 [TBL] [Abstract][Full Text] [Related]