BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34143900)

  • 41. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime.
    Hu J; Lin X; Wang J; Cui X; Dai J; Chu H; Zhang J
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):781-7. PubMed ID: 20683717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil.
    Abd-Alla MH; El-Enany AW; Nafady NA; Khalaf DM; Morsy FM
    Microbiol Res; 2014 Jan; 169(1):49-58. PubMed ID: 23920230
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The efficiency of arbuscular mycorrhiza in increasing tolerance of Triticum aestivum L. to alkaline stress.
    Farghaly FA; Nafady NA; Abdel-Wahab DA
    BMC Plant Biol; 2022 Oct; 22(1):490. PubMed ID: 36253754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue.
    Velásquez A; Valenzuela M; Carvajal M; Fiaschi G; Avio L; Giovannetti M; D'Onofrio C; Seeger M
    Plant Physiol Biochem; 2020 Oct; 155():437-443. PubMed ID: 32814280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants?
    Crossay T; Majorel C; Redecker D; Gensous S; Medevielle V; Durrieu G; Cavaloc Y; Amir H
    Mycorrhiza; 2019 Jul; 29(4):325-339. PubMed ID: 31203456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross interaction of Pseudomonas putida and Glomus intraradices and its effect on wheat root colonization.
    Esfehani YJ; Khavazi K; Ghorbani S
    Pak J Biol Sci; 2009 Oct; 12(20):1365-70. PubMed ID: 20128504
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phenolic compounds in grains, sprouts and wheatgrass of hulled and non-hulled wheat species.
    Benincasa P; Galieni A; Manetta AC; Pace R; Guiducci M; Pisante M; Stagnari F
    J Sci Food Agric; 2015 Jul; 95(9):1795-803. PubMed ID: 25131800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of arachidonic and jasmonic acid elicitation on the content of phenolic compounds and antioxidant and anti-inflammatory properties of wheatgrass (Triticum aestivum L.).
    Złotek U; Szymanowska U; Jakubczyk A; Sikora M; Świeca M
    Food Chem; 2019 Aug; 288():256-261. PubMed ID: 30902290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioactive Phytochemicals and Antioxidant Properties of the Grains and Sprouts of Colored Wheat Genotypes.
    Sytar O; Bośko P; Živčák M; Brestic M; Smetanska I
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30200643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arbuscular mycorrhizal fungi associated with maize plants during hydric deficit.
    Santana LR; da Silva LN; Tavares GG; Batista PF; Cabral JSR; Souchie EL
    Sci Rep; 2023 Jan; 13(1):1519. PubMed ID: 36707548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization.
    Gao X; Akhter F; Tenuta M; Flaten DN; Gawalko EJ; Grant CA
    J Sci Food Agric; 2010 Apr; 90(5):750-8. PubMed ID: 20355108
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments.
    Abd El-Baky HH; El-Baz FK; El Baroty GS
    J Sci Food Agric; 2010 Jan; 90(2):299-303. PubMed ID: 20355046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus.
    Zhu H; Zhang R; Chen W; Gu Z; Xie X; Zhao H; Yao Q
    J Plant Physiol; 2015 Apr; 178():27-34. PubMed ID: 25765360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antioxidant activity of free and bound compounds in quinoa (Chenopodium quinoa Willd.) seeds in comparison with durum wheat and emmer.
    Laus MN; Gagliardi A; Soccio M; Flagella Z; Pastore D
    J Food Sci; 2012 Nov; 77(11):C1150-5. PubMed ID: 23057788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological and proteomic analyses reveal the important role of arbuscular mycorrhizal fungi on enhancing photosynthesis in wheat under cadmium stress.
    Li H; Zhang L; Wu B; Li Y; Wang H; Teng H; Wei D; Yuan Z; Yuan Z
    Ecotoxicol Environ Saf; 2023 Aug; 261():115105. PubMed ID: 37285679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress.
    Maya MA; Matsubara Y
    Mycorrhiza; 2013 Jul; 23(5):381-90. PubMed ID: 23334657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development.
    Barros Santos MC; Ribeiro da Silva Lima L; Ramos Nascimento F; Pimenta do Nascimento T; Cameron LC; Simões Larraz Ferreira M
    Food Res Int; 2019 Oct; 124():118-128. PubMed ID: 31466630
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Showing their mettle: extraradical mycelia of arbuscular mycorrhizae form a metal filter to improve host Al tolerance and P nutrition.
    Seguel A; Meier F; Azcón R; Valentine A; Meriño-Gergichevich C; Cornejo P; Aguilera P; Borie F
    J Sci Food Agric; 2020 Jan; 100(2):803-810. PubMed ID: 31612503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time.
    Rouphael Y; Colla G; Graziani G; Ritieni A; Cardarelli M; De Pascale S
    Food Chem; 2017 Nov; 234():10-19. PubMed ID: 28551211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Post-anthesis thermal stress induces differential accumulation of bioactive compounds in field-grown barley.
    Martínez-Subirà M; Romero MP; Moralejo M; Macià A; Puig E; Savin R; Romagosa I
    J Sci Food Agric; 2021 Dec; 101(15):6496-6504. PubMed ID: 34000070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.