BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34143936)

  • 1. Repetitive Synthesis of High-Molecular-Weight Hyaluronic Acid with Immobilized Enzyme Cascades.
    Gottschalk J; Aßmann M; Kuballa J; Elling L
    ChemSusChem; 2022 May; 15(9):e202101071. PubMed ID: 34143936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Factors for A One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid.
    Gottschalk J; Zaun H; Eisele A; Kuballa J; Elling L
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant synthesis of hyaluronan by Agrobacterium sp.
    Mao Z; Chen RR
    Biotechnol Prog; 2007; 23(5):1038-42. PubMed ID: 17705506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end.
    Tlapak-Simmons VL; Baron CA; Gotschall R; Haque D; Canfield WM; Weigel PH
    J Biol Chem; 2005 Apr; 280(13):13012-8. PubMed ID: 15668242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus.
    Chen WY; Marcellin E; Steen JA; Nielsen LK
    Mol Biotechnol; 2014 Feb; 56(2):147-56. PubMed ID: 23903961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end.
    Weigel PH; Baggenstoss BA; Washburn JL
    Glycobiology; 2017 Jun; 27(6):536-554. PubMed ID: 28138013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis.
    Vigetti D; Deleonibus S; Moretto P; Karousou E; Viola M; Bartolini B; Hascall VC; Tammi M; De Luca G; Passi A
    J Biol Chem; 2012 Oct; 287(42):35544-35555. PubMed ID: 22887999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of UDP-glucose dehydrogenase from Pasteurella multocida CVCC 408 and its application in hyaluronic acid biosynthesis.
    Chu X; Han J; Guo D; Fu Z; Liu W; Tao Y
    Enzyme Microb Technol; 2016 Apr; 85():64-70. PubMed ID: 26920483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer.
    Sheng JZ; Ling PX; Zhu XQ; Guo XP; Zhang TM; He YL; Wang FS
    J Appl Microbiol; 2009 Jul; 107(1):136-44. PubMed ID: 19302304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymological characterization of recombinant xenopus DG42, a vertebrate hyaluronan synthase.
    Pummill PE; Achyuthan AM; DeAngelis PL
    J Biol Chem; 1998 Feb; 273(9):4976-81. PubMed ID: 9478944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Energy Metabolism and Hyaluronan Synthesis.
    Caon I; Parnigoni A; Viola M; Karousou E; Passi A; Vigetti D
    J Histochem Cytochem; 2021 Jan; 69(1):35-47. PubMed ID: 32623953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.
    Hmar RV; Prasad SB; Jayaraman G; Ramachandran KB
    Biotechnol J; 2014 Dec; 9(12):1554-64. PubMed ID: 25044639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of two UDP-glucose dehydrogenases on hyaluronic acid biotransformation].
    GuoI D; Han J; Liu W; Fu Z; Zhu Q; Tao Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Nov; 30(11):1691-700. PubMed ID: 25985520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant production of hyaluronic acid.
    Brown SH; Pummill PE
    Curr Pharm Biotechnol; 2008 Aug; 9(4):239-41. PubMed ID: 18691082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.
    Chen WY; Marcellin E; Hung J; Nielsen LK
    J Biol Chem; 2009 Jul; 284(27):18007-14. PubMed ID: 19451654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3.
    Rilla K; Oikari S; Jokela TA; Hyttinen JM; Kärnä R; Tammi RH; Tammi MI
    J Biol Chem; 2013 Feb; 288(8):5973-83. PubMed ID: 23303191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective bacterial and fungal sources of hyaluronic acid: A review.
    Shikina EV; Kovalevsky RA; Shirkovskaya AI; Toukach PV
    Comput Struct Biotechnol J; 2022; 20():6214-6236. PubMed ID: 36420162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel β1,4 N-acetylglucosaminyltransferase in de novo enzymatic synthesis of hyaluronic acid oligosaccharides.
    Sun JY; Deng JQ; Du RR; Xin SY; Cao YL; Lu Z; Guo XP; Wang FS; Sheng JZ
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5119-5129. PubMed ID: 37405432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid.
    Yu H; Stephanopoulos G
    Metab Eng; 2008 Jan; 10(1):24-32. PubMed ID: 17959405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale.
    Fischöder T; Wahl C; Zerhusen C; Elling L
    Biotechnol J; 2019 Apr; 14(4):. PubMed ID: 30367549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.