BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34143936)

  • 41. Expanding glycosaminoglycan chemical space: towards the creation of sulfated analogs, novel polymers and chimeric constructs.
    Lane RS; St Ange K; Zolghadr B; Liu X; Schäffer C; Linhardt RJ; DeAngelis PL
    Glycobiology; 2017 Jul; 27(7):646-656. PubMed ID: 28334971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors.
    DeAngelis PL; Oatman LC; Gay DF
    J Biol Chem; 2003 Sep; 278(37):35199-203. PubMed ID: 12840012
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase.
    DeAngelis PL
    J Biol Chem; 1999 Sep; 274(37):26557-62. PubMed ID: 10473619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads.
    Liu Z; Zhang J; Chen X; Wang PG
    Chembiochem; 2002 Apr; 3(4):348-55. PubMed ID: 11933236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular content of UDP-N-acetylhexosamines controls hyaluronan synthase 2 expression and correlates with O-linked N-acetylglucosamine modification of transcription factors YY1 and SP1.
    Jokela TA; Makkonen KM; Oikari S; Kärnä R; Koli E; Hart GW; Tammi RH; Carlberg C; Tammi MI
    J Biol Chem; 2011 Sep; 286(38):33632-40. PubMed ID: 21795679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.
    Jeong E; Shim WY; Kim JH
    J Biotechnol; 2014 Sep; 185():28-36. PubMed ID: 24892811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA.
    Guo Y; Fang J; Li T; Li X; Ma C; Wang X; Wang PG; Li L
    Carbohydr Res; 2015 Jun; 411():1-5. PubMed ID: 25942062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative continuous assay for hyaluronan synthase.
    Krupa JC; Shaya D; Chi L; Linhardt RJ; Cygler M; Withers SG; Mort JS
    Anal Biochem; 2007 Feb; 361(2):218-25. PubMed ID: 17173853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hyaluronic acid production in Bacillus subtilis.
    Widner B; Behr R; Von Dollen S; Tang M; Heu T; Sloma A; Sternberg D; Deangelis PL; Weigel PH; Brown S
    Appl Environ Microbiol; 2005 Jul; 71(7):3747-52. PubMed ID: 16000785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights.
    Jia Y; Zhu J; Chen X; Tang D; Su D; Yao W; Gao X
    Bioresour Technol; 2013 Mar; 132():427-31. PubMed ID: 23433979
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif.
    Baggenstoss BA; Harris EN; Washburn JL; Medina AP; Nguyen L; Weigel PH
    Glycobiology; 2017 Jan; 27(2):154-164. PubMed ID: 27558839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties.
    Itano N; Sawai T; Yoshida M; Lenas P; Yamada Y; Imagawa M; Shinomura T; Hamaguchi M; Yoshida Y; Ohnuki Y; Miyauchi S; Spicer AP; McDonald JA; Kimata K
    J Biol Chem; 1999 Aug; 274(35):25085-92. PubMed ID: 10455188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of
    Manfrão-Netto JHC; Queiroz EB; Rodrigues KA; Coelho CM; Paes HC; Rech EL; Parachin NS
    Microorganisms; 2021 Feb; 9(2):. PubMed ID: 33546444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial production of hyaluronic acid: current state, challenges, and perspectives.
    Liu L; Liu Y; Li J; Du G; Chen J
    Microb Cell Fact; 2011 Nov; 10():99. PubMed ID: 22088095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity.
    Yoshida M; Itano N; Yamada Y; Kimata K
    J Biol Chem; 2000 Jan; 275(1):497-506. PubMed ID: 10617644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review.
    Wei M; Huang Y; Zhu J; Qiao Y; Xiao N; Jin M; Gao H; Huang Y; Hu X; Li O
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132334. PubMed ID: 38744368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc.
    Hascall VC; Wang A; Tammi M; Oikari S; Tammi R; Passi A; Vigetti D; Hanson RW; Hart GW
    Matrix Biol; 2014 Apr; 35():14-7. PubMed ID: 24486448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida.
    Jing W; DeAngelis PL
    Glycobiology; 2003 Oct; 13(10):661-71. PubMed ID: 12799342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyaluronic acid (HA) stimulates the in vitro expression of CD44 proteins but not HAS1 proteins in normal human epidermal keratinocytes (NHEKs) and is HA molecular weight dependent.
    Gruber JV; Holtz R; Riemer J
    J Cosmet Dermatol; 2022 Mar; 21(3):1193-1198. PubMed ID: 33908161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan.
    Hubbard C; McNamara JT; Azumaya C; Patel MS; Zimmer J
    J Mol Biol; 2012 Apr; 418(1-2):21-31. PubMed ID: 22343360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.