These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 34144087)
1. Exosomes as natural delivery carriers for programmable therapeutic nucleic acid nanoparticles (NANPs). Ke W; Afonin KA Adv Drug Deliv Rev; 2021 Sep; 176():113835. PubMed ID: 34144087 [TBL] [Abstract][Full Text] [Related]
2. Exosome mediated delivery of functional nucleic acid nanoparticles (NANPs). Nordmeier S; Ke W; Afonin KA; Portnoy V Nanomedicine; 2020 Nov; 30():102285. PubMed ID: 32781137 [TBL] [Abstract][Full Text] [Related]
3. Induction of Cytokines by Nucleic Acid Nanoparticles (NANPs) Depends on the Type of Delivery Carrier. Avila YI; Chandler M; Cedrone E; Newton HS; Richardson M; Xu J; Clogston JD; Liptrott NJ; Afonin KA; Dobrovolskaia MA Molecules; 2021 Jan; 26(3):. PubMed ID: 33513786 [TBL] [Abstract][Full Text] [Related]
4. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Johnson MB; Chandler M; Afonin KA Adv Drug Deliv Rev; 2021 Jun; 173():427-438. PubMed ID: 33857556 [TBL] [Abstract][Full Text] [Related]
5. Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology. Afonin KA; Dobrovolskaia MA; Church G; Bathe M ACS Nano; 2020 Aug; 14(8):9221-9227. PubMed ID: 32706238 [TBL] [Abstract][Full Text] [Related]
6. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. Halman JR; Kim KT; Gwak SJ; Pace R; Johnson MB; Chandler MR; Rackley L; Viard M; Marriott I; Lee JS; Afonin KA Nanomedicine; 2020 Jan; 23():102094. PubMed ID: 31669854 [TBL] [Abstract][Full Text] [Related]
7. Bioengineered nanotechnology for nucleic acid delivery. Zhang Y; Luo J; Gui X; Zheng Y; Schaar E; Liu G; Shi J J Control Release; 2023 Dec; 364():124-141. PubMed ID: 37879440 [TBL] [Abstract][Full Text] [Related]
8. The Recognition of and Reactions to Nucleic Acid Nanoparticles by Human Immune Cells. Bila D; Radwan Y; Dobrovolskaia MA; Panigaj M; Afonin KA Molecules; 2021 Jul; 26(14):. PubMed ID: 34299506 [TBL] [Abstract][Full Text] [Related]
9. Toll-Like Receptor-Mediated Recognition of Nucleic Acid Nanoparticles (NANPs) in Human Primary Blood Cells. Hong E; Halman JR; Shah A; Cedrone E; Truong N; Afonin KA; Dobrovolskaia MA Molecules; 2019 Mar; 24(6):. PubMed ID: 30897721 [TBL] [Abstract][Full Text] [Related]
10. Exosomes as nucleic acid nanocarriers. van den Boorn JG; Dassler J; Coch C; Schlee M; Hartmann G Adv Drug Deliv Rev; 2013 Mar; 65(3):331-5. PubMed ID: 22750807 [TBL] [Abstract][Full Text] [Related]
11. Structure and Composition Define Immunorecognition of Nucleic Acid Nanoparticles. Hong E; Halman JR; Shah AB; Khisamutdinov EF; Dobrovolskaia MA; Afonin KA Nano Lett; 2018 Jul; 18(7):4309-4321. PubMed ID: 29894623 [TBL] [Abstract][Full Text] [Related]
12. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. Panigaj M; Johnson MB; Ke W; McMillan J; Goncharova EA; Chandler M; Afonin KA ACS Nano; 2019 Nov; 13(11):12301-12321. PubMed ID: 31664817 [TBL] [Abstract][Full Text] [Related]
14. Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Afonin KA; Dobrovolskaia MA; Ke W; Grodzinski P; Bathe M Adv Drug Deliv Rev; 2022 Feb; 181():114081. PubMed ID: 34915069 [TBL] [Abstract][Full Text] [Related]
15. Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives. Rajput A; Varshney A; Bajaj R; Pokharkar V Molecules; 2022 Oct; 27(21):. PubMed ID: 36364116 [TBL] [Abstract][Full Text] [Related]
16. Discriminating Immunorecognition Pathways Activated by RNA Nanostructures. Danai L; Johnson MB; Afonin KA Methods Mol Biol; 2023; 2709():229-240. PubMed ID: 37572284 [TBL] [Abstract][Full Text] [Related]
17. Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. Kim H; Kim EH; Kwak G; Chi SG; Kim SH; Yang Y Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374978 [TBL] [Abstract][Full Text] [Related]
18. Advances in exosome therapies in ophthalmology-From bench to clinical trial. Sanghani A; Andriesei P; Kafetzis KN; Tagalakis AD; Yu-Wai-Man C Acta Ophthalmol; 2022 May; 100(3):243-252. PubMed ID: 34114746 [TBL] [Abstract][Full Text] [Related]
19. Anhydrous Nucleic Acid Nanoparticles for Storage and Handling at Broad Range of Temperatures. Tran AN; Chandler M; Halman J; Beasock D; Fessler A; McKeough RQ; Lam PA; Furr DP; Wang J; Cedrone E; Dobrovolskaia MA; Dokholyan NV; Trammell SR; Afonin KA Small; 2022 Apr; 18(13):e2104814. PubMed ID: 35128787 [TBL] [Abstract][Full Text] [Related]
20. Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro. Juneja R; Vadarevu H; Halman J; Tarannum M; Rackley L; Dobbs J; Marquez J; Chandler M; Afonin K; Vivero-Escoto JL ACS Appl Mater Interfaces; 2020 Sep; 12(35):38873-38886. PubMed ID: 32805923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]