These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 34144087)

  • 21. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics.
    Tenchov R; Sasso JM; Wang X; Liaw WS; Chen CA; Zhou QA
    ACS Nano; 2022 Nov; 16(11):17802-17846. PubMed ID: 36354238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expanding Structural Space for Immunomodulatory Nucleic Acid Nanoparticles (Nanps) via Spatial Arrangement of Their Therapeutic Moieties.
    Chandler M; Rolband L; Johnson MB; Shi D; Avila YI; Cedrone E; Beasock D; Danai L; Stassenko E; Krueger JK; Jiang J; Lee JS; Dobrovolskaia MA; Afonin KA
    Adv Funct Mater; 2022 Oct; 32(43):. PubMed ID: 37008199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Break to Build: Isothermal Assembly of Nucleic Acid Nanoparticles (NANPs)
    Beasock D; Ha A; Halman J; Panigaj M; Wang J; Dokholyan NV; Afonin KA
    Bioconjug Chem; 2023 Jun; 34(6):1139-1146. PubMed ID: 37293781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges.
    Oshchepkova A; Zenkova M; Vlassov V
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Intracellular Compartmentalization of RNA Nanostructures.
    Radwan Y; Afonin KA; Johnson MB
    Methods Mol Biol; 2023; 2709():211-228. PubMed ID: 37572283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exosome vesicle as a nano-therapeutic carrier for breast cancer.
    Mughees M; Kumar K; Wajid S
    J Drug Target; 2021 Feb; 29(2):121-130. PubMed ID: 32787592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in extracellular vesicles for therapeutic cargo delivery.
    Kim HI; Park J; Zhu Y; Wang X; Han Y; Zhang D
    Exp Mol Med; 2024 Apr; 56(4):836-849. PubMed ID: 38556545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using exosomes, naturally-equipped nanocarriers, for drug delivery.
    Batrakova EV; Kim MS
    J Control Release; 2015 Dec; 219():396-405. PubMed ID: 26241750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior.
    Chandler M; Afonin KA
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31013847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial Immune Cell, AI-cell, a New Tool to Predict Interferon Production by Peripheral Blood Monocytes in Response to Nucleic Acid Nanoparticles.
    Chandler M; Jain S; Halman J; Hong E; Dobrovolskaia MA; Zakharov AV; Afonin KA
    Small; 2022 Nov; 18(46):e2204941. PubMed ID: 36216772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Change in Lipofectamine Carrier as a Tool to Fine-Tune Immunostimulation of Nucleic Acid Nanoparticles.
    Newton HS; Radwan Y; Xu J; Clogston JD; Dobrovolskaia MA; Afonin KA
    Molecules; 2023 Jun; 28(11):. PubMed ID: 37298960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics.
    Dobrovolskaia MA; McNeil SE
    Expert Opin Drug Deliv; 2015 Jul; 12(7):1163-75. PubMed ID: 25994601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges in the development and establishment of exosome-based drug delivery systems.
    Wang J; Chen D; Ho EA
    J Control Release; 2021 Jan; 329():894-906. PubMed ID: 33058934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification.
    Johnson MB; Halman JR; Miller DK; Cooper JS; Khisamutdinov EF; Marriott I; Afonin KA
    Nucleic Acids Res; 2020 Nov; 48(20):11785-11798. PubMed ID: 33091133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering exosomes as refined biological nanoplatforms for drug delivery.
    Luan X; Sansanaphongpricha K; Myers I; Chen H; Yuan H; Sun D
    Acta Pharmacol Sin; 2017 Jun; 38(6):754-763. PubMed ID: 28392567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy.
    Li J; Zhang Y; Dong PY; Yang GM; Gurunathan S
    Biomed Pharmacother; 2023 Sep; 165():115087. PubMed ID: 37392659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exosomes as Targeted Delivery Drug System: Advances in Exosome Loading, Surface Functionalization and Potential for Clinical Application.
    Guo ZY; Tang Y; Cheng YC
    Curr Drug Deliv; 2024; 21(4):473-487. PubMed ID: 35702803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic immunomodulation by rationally designed nucleic acids and nucleic acid nanoparticles.
    Panigaj M; Skelly E; Beasock D; Marriott I; Johnson MB; Salotti J; Afonin KA
    Front Immunol; 2023; 14():1053550. PubMed ID: 36798121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application.
    Yamashita T; Takahashi Y; Takakura Y
    Biol Pharm Bull; 2018; 41(6):835-842. PubMed ID: 29863072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy.
    Zhang Y; Liu Q; Zhang X; Huang H; Tang S; Chai Y; Xu Z; Li M; Chen X; Liu J; Yang C
    J Nanobiotechnology; 2022 Jun; 20(1):279. PubMed ID: 35701788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.