These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
801 related articles for article (PubMed ID: 34144373)
1. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373 [TBL] [Abstract][Full Text] [Related]
2. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. Sun D; Zhou S; Gao W ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091 [TBL] [Abstract][Full Text] [Related]
3. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines. Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199 [TBL] [Abstract][Full Text] [Related]
4. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817 [TBL] [Abstract][Full Text] [Related]
5. Combining Nanomedicine and Immunotherapy. Shi Y; Lammers T Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725 [TBL] [Abstract][Full Text] [Related]
6. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies? Gawali P; Saraswat A; Bhide S; Gupta S; Patel K Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320 [TBL] [Abstract][Full Text] [Related]
7. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Ren L; Feng W; Shao J; Ma J; Xu M; Zhu BZ; Zheng N; Liu S Theranostics; 2020; 10(14):6384-6398. PubMed ID: 32483459 [TBL] [Abstract][Full Text] [Related]
8. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors. Danhier F; Danhier P; De Saedeleer CJ; Fruytier AC; Schleich N; des Rieux A; Sonveaux P; Gallez B; Préat V Int J Pharm; 2015 Feb; 479(2):399-407. PubMed ID: 25578367 [TBL] [Abstract][Full Text] [Related]
9. Platinum-based combination nanomedicines for cancer therapy. Li Y; Lin W Curr Opin Chem Biol; 2023 Jun; 74():102290. PubMed ID: 36989943 [TBL] [Abstract][Full Text] [Related]
10. Nanomedicines for the treatment of hematological malignancies. Deshantri AK; Varela Moreira A; Ecker V; Mandhane SN; Schiffelers RM; Buchner M; Fens MHAM J Control Release; 2018 Oct; 287():194-215. PubMed ID: 30165140 [TBL] [Abstract][Full Text] [Related]
11. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Yang J; Wang X; Wang B; Park K; Wooley K; Zhang S Adv Drug Deliv Rev; 2022 Nov; 190():114525. PubMed ID: 36100142 [TBL] [Abstract][Full Text] [Related]
12. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939 [TBL] [Abstract][Full Text] [Related]
13. Transcytosis-enabled active extravasation of tumor nanomedicine. Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830 [TBL] [Abstract][Full Text] [Related]
14. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy. Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456 [TBL] [Abstract][Full Text] [Related]
15. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment. Kwon S; Ko H; You DG; Kataoka K; Park JH Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894 [TBL] [Abstract][Full Text] [Related]
16. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Jiang Y; Jiang Z; Wang M; Ma L Adv Drug Deliv Rev; 2022 Jan; 180():114034. PubMed ID: 34736986 [TBL] [Abstract][Full Text] [Related]
17. High-resolution 3D visualization of nanomedicine distribution in tumors. Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157 [TBL] [Abstract][Full Text] [Related]
18. Preclinical development of carrier-free prodrug nanoparticles for enhanced antitumor therapeutic potential with less toxicity. Shim MK; Yang S; Park J; Yoon JS; Kim J; Moon Y; Shim N; Jo M; Choi Y; Kim K J Nanobiotechnology; 2022 Oct; 20(1):436. PubMed ID: 36195911 [TBL] [Abstract][Full Text] [Related]
19. Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. Braunová A; Chytil P; Laga R; Šírová M; Machová D; Parnica J; Říhová B; Janoušková O; Etrych T J Control Release; 2020 May; 321():718-733. PubMed ID: 32142741 [TBL] [Abstract][Full Text] [Related]