BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34145038)

  • 1. MYC- and MIZ1-Dependent Vesicular Transport of Double-Strand RNA Controls Immune Evasion in Pancreatic Ductal Adenocarcinoma.
    Krenz B; Gebhardt-Wolf A; Ade CP; Gaballa A; Roehrig F; Vendelova E; Baluapuri A; Eilers U; Gallant P; D'Artista L; Wiegering A; Gasteiger G; Rosenfeldt MT; Bauer S; Zender L; Wolf E; Eilers M
    Cancer Res; 2021 Aug; 81(16):4242-4256. PubMed ID: 34145038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrombin Signaling Promotes Pancreatic Adenocarcinoma through PAR-1-Dependent Immune Evasion.
    Yang Y; Stang A; Schweickert PG; Lanman NA; Paul EN; Monia BP; Revenko AS; Palumbo JS; Mullins ES; Elzey BD; Janssen EM; Konieczny SF; Flick MJ
    Cancer Res; 2019 Jul; 79(13):3417-3430. PubMed ID: 31048498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.
    He P; Yang JW; Yang VW; Bialkowska AB
    Gastroenterology; 2018 Apr; 154(5):1494-1508.e13. PubMed ID: 29248441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment.
    Nakkina SP; Gitto SB; Beardsley JM; Pandey V; Rohr MW; Parikh JG; Phanstiel O; Altomare DA
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells.
    Liang C; Shi S; Liu M; Qin Y; Meng Q; Hua J; Ji S; Zhang Y; Yang J; Xu J; Ni Q; Li M; Yu X
    Cancer Res; 2019 Jan; 79(1):133-145. PubMed ID: 30355620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Yap-Myc-Sox2-p53 Regulatory Network Dictates Metabolic Homeostasis and Differentiation in Kras-Driven Pancreatic Ductal Adenocarcinomas.
    Murakami S; Nemazanyy I; White SM; Chen H; Nguyen CDK; Graham GT; Saur D; Pende M; Yi C
    Dev Cell; 2019 Oct; 51(1):113-128.e9. PubMed ID: 31447265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FASTKD2 promotes cancer cell progression through upregulating Myc expression in pancreatic ductal adenocarcinoma.
    Fang R; Zhang B; Lu X; Jin X; Liu T
    J Cell Biochem; 2020 Mar; 121(3):2458-2466. PubMed ID: 31692063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression.
    Wan C; Gong C; Zhang H; Hua L; Li X; Chen X; Chen Y; Ding X; He S; Cao W; Wang Y; Fan S; Xiao Y; Zhou G; Shen A
    Cancer Lett; 2016 Apr; 373(1):67-76. PubMed ID: 26803058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance.
    Farrell AS; Joly MM; Allen-Petersen BL; Worth PJ; Lanciault C; Sauer D; Link J; Pelz C; Heiser LM; Morton JP; Muthalagu N; Hoffman MT; Manning SL; Pratt ED; Kendsersky ND; Egbukichi N; Amery TS; Thoma MC; Jenny ZP; Rhim AD; Murphy DJ; Sansom OJ; Crawford HC; Sheppard BC; Sears RC
    Nat Commun; 2017 Nov; 8(1):1728. PubMed ID: 29170413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer.
    Cruz VH; Arner EN; Du W; Bremauntz AE; Brekken RA
    JCI Insight; 2019 Apr; 5(9):. PubMed ID: 30938713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KLF10 loss in the pancreas provokes activation of SDF-1 and induces distant metastases of pancreatic ductal adenocarcinoma in the Kras
    Weng CC; Hawse JR; Subramaniam M; Chang VHS; Yu WCY; Hung WC; Chen LT; Cheng KH
    Oncogene; 2017 Sep; 36(39):5532-5543. PubMed ID: 28581520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells.
    Diersch S; Wirth M; Schneeweis C; Jörs S; Geisler F; Siveke JT; Rad R; Schmid RM; Saur D; Rustgi AK; Reichert M; Schneider G
    Oncogene; 2016 Jul; 35(29):3880-6. PubMed ID: 26592448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma.
    Murakami S; Shahbazian D; Surana R; Zhang W; Chen H; Graham GT; White SM; Weiner LM; Yi C
    Oncogene; 2017 Mar; 36(9):1232-1244. PubMed ID: 27546622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.
    Jiang SH; Li J; Dong FY; Yang JY; Liu DJ; Yang XM; Wang YH; Yang MW; Fu XL; Zhang XX; Li Q; Pang XF; Huo YM; Li J; Zhang JF; Lee HY; Lee SJ; Qin WX; Gu JR; Sun YW; Zhang ZG
    Gastroenterology; 2017 Jul; 153(1):277-291.e19. PubMed ID: 28315323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KRAS drives immune evasion in a genetic model of pancreatic cancer.
    Ischenko I; D'Amico S; Rao M; Li J; Hayman MJ; Powers S; Petrenko O; Reich NC
    Nat Commun; 2021 Mar; 12(1):1482. PubMed ID: 33674596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of SOX18 correlates with accelerated cell growth and poor prognosis in human pancreatic ductal adenocarcinoma.
    Wang Y; Guo H; Zhang D; Yu X; Leng X; Li S; Zhu W
    Biochem Biophys Res Commun; 2016 Oct; 479(3):510-516. PubMed ID: 27663663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism.
    Sureban SM; May R; Weygant N; Qu D; Chandrakesan P; Bannerman-Menson E; Ali N; Pantazis P; Westphalen CB; Wang TC; Houchen CW
    Cancer Lett; 2014 Aug; 351(1):151-61. PubMed ID: 24880079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docosahexaenoic acid inhibits the proliferation of Kras/TP53 double mutant pancreatic ductal adenocarcinoma cells through modulation of glutathione level and suppression of nucleotide synthesis.
    Hung WC; Lee DY; Chiang EI; Syu JN; Chao CY; Yang MD; Tsai SY; Tang FY
    PLoS One; 2020; 15(11):e0241186. PubMed ID: 33137095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes.
    Inagawa Y; Yamada K; Yugawa T; Ohno S; Hiraoka N; Esaki M; Shibata T; Aoki K; Saya H; Kiyono T
    Carcinogenesis; 2014 Aug; 35(8):1840-6. PubMed ID: 24858378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.