BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34145298)

  • 1. Mechanism of genome instability mediated by human DNA polymerase mu misincorporation.
    Guo M; Wang Y; Tang Y; Chen Z; Hou J; Dai J; Wang Y; Wang L; Xu H; Tian B; Hua Y; Zhao Y
    Nat Commun; 2021 Jun; 12(1):3759. PubMed ID: 34145298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate.
    Çağlayan M; Wilson SH
    Nat Commun; 2018 Oct; 9(1):4213. PubMed ID: 30310068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2'-guanosine.
    Kaminski AM; Chiruvella KK; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2019 Sep; 47(17):9410-9422. PubMed ID: 31435651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evidence for an in
    Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M
    J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creative template-dependent synthesis by human polymerase mu.
    Moon AF; Gosavi RA; Kunkel TA; Pedersen LC; Bebenek K
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4530-6. PubMed ID: 26240373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides.
    Li Y; Schlick T
    PLoS Comput Biol; 2013; 9(5):e1003074. PubMed ID: 23717197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate.
    Çağlayan M
    Sci Rep; 2020 Jan; 10(1):940. PubMed ID: 31969622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining.
    Davis BJ; Havener JM; Ramsden DA
    Nucleic Acids Res; 2008 May; 36(9):3085-94. PubMed ID: 18397950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential role for polymerase specialization in cellular nonhomologous end joining.
    Pryor JM; Waters CA; Aza A; Asagoshi K; Strom C; Mieczkowski PA; Blanco L; Ramsden DA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4537-45. PubMed ID: 26240371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 20 years of DNA Polymerase μ, the polymerase that still surprises.
    Ghosh D; Raghavan SC
    FEBS J; 2021 Dec; 288(24):7230-7242. PubMed ID: 33786971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
    Wu WJ; Su MI; Wu JL; Kumar S; Lim LH; Wang CW; Nelissen FH; Chen MC; Doreleijers JF; Wijmenga SS; Tsai MD
    J Am Chem Soc; 2014 Apr; 136(13):4927-37. PubMed ID: 24617852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidelity of the human mitochondrial DNA polymerase.
    Lee HR; Johnson KA
    J Biol Chem; 2006 Nov; 281(47):36236-40. PubMed ID: 17005554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4.
    Jung H; Lee S
    Biochem J; 2020 Aug; 477(15):2859-2871. PubMed ID: 32686822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase μ is a global player in the repair of non-homologous end-joining substrates.
    Chayot R; Montagne B; Ricchetti M
    DNA Repair (Amst); 2012 Jan; 11(1):22-34. PubMed ID: 22071146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen.
    Perlow RA; Broyde S
    J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human DNA Polymerase μ Can Use a Noncanonical Mechanism for Multiple Mn
    Chang YK; Huang YP; Liu XX; Ko TP; Bessho Y; Kawano Y; Maestre-Reyna M; Wu WJ; Tsai MD
    J Am Chem Soc; 2019 May; 141(21):8489-8502. PubMed ID: 31067051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.